
Two Bits
-

The Cultural Significance of Free Software

Christopher M. Kelty

2008

Two Bits - The Cultural Significance of Free Software

Copyright © 2008 Duke University Press
Printed in the United States of America on acid-free paper
Designed by C. H. Westmoreland
Typeset in Charis (an Open Source font) by Achorn International
Library of Congress Cataloging-in-Publication data and republication acknowledg-
ments appear on the last printed pages of this book.

Licensed under the Creative Commons Attribution-NonCommercial-Share Alike Li-
cense, available at https://creativecommons.org/licenses/by-nc-sa/3.0/ or by mail
from Creative Commons, 559 Nathan Abbott Way, Stanford, Calif. 94305, U.S.A.
"NonCommercial" as defined in this license specifically excludes any sale of this
work or any portion thereof for money, even if sale does not result in a profit by the
seller or if the sale is by a 501(c)(3) nonprofit or NGO.
Duke University Press gratefully acknowledges the support of HASTAC (Humanities,
Arts, Science, and Technology Advanced Collaboratory), which provided funds to
help support the electronic interface of this book.
Two Bits is accessible on the Web at twobits.net.

Two Bits Christopher M. Kelty a

https://twobits.net
https://kelty.org/

Two Bits - The Cultural 1

Significance of Free Software
Christopher M. Kelty

Two Bits Christopher M. Kelty 1

https://twobits.net
https://kelty.org/

Two Bits a

Dedication 2

Preface 3

Acknowledgements 5

Introduction 7

Part I the internet 25

1.Geeks and Recursive Publics 26
From the Facts of Human Activity

. 28
Geeks and Their Internets

. 30
Operating Systems and Social Systems

. 33
The Idea of Order at the Keyboard

. 34
Internet Silk Road

. 38
/pub

. 40
From Napster to the Internet

. 43
Requests for Comments

. 48
Conclusion: Recursive Public

. 51

2.Protestant Reformers, Polymaths, Transhumanists 53
Protestant Reformation

. 54
Polymaths and Transhumanists

. 62
Conclusion

. 74

Part II free software 76

3.The Movement 77
Forking Free Software, 1997-2000

. 78

Two Bits Christopher M. Kelty i

https://twobits.net
https://kelty.org/

A Movement?
. 87

Conclusion
. 90

4.Sharing Source Code 92
Before Source

. 94
The UNIX Time-Sharing System

. 98
Sharing UNIX

. 101
Porting UNIX

. 103
Forking UNIX

. 106
Conclusion

. 110

5.Conceiving Open Systems 112
Hopelessly Plural

. 113
Open Systems One: Operating Systems

. 118
Figuring Out Goes Haywire

. 120
Denouement

. 125
Open Systems Two: Networks

. 127
Bootstrapping Networks

. 128
Success as Failure

. 133
Conclusion

. 135

6.Writing Copyright Licenses 137
Free Software Licenses, Once More with Feeling

. 138
EMACS, the Extensible, Customizable, Self-documenting, Real-time Display

Editor
. 140

The Controversy
. 144

The Context of Copyright
. 152

Conclusion
. 158

Two Bits Christopher M. Kelty ii

https://twobits.net
https://kelty.org/

7.Coordinating Collaborations 161
From UNIX to Minix to Linux

. 162
Design and Adaptability

. 166
Patch and Vote

. 170
Check Out and Commit

. 175
Coordination Is Design

. 181
Conclusion: Experiments and Modulations

. 183

Part III modulations 184

8.”If We Succeed, We Will Disappear” 185
After Free Software

. 186
Stories of Connexion

. 187
Modulations: From Free Software to Connexions

. 192
Modulations: From Connexions to Creative Commons

. 194
Participant Figuring Out

. 198

9.Reuse, Modification, and the Nonexistence of Norms 203
Whiteboards: What Was Publication?

. 204
Publication in Connexions

. 207
Agency and Structure in Connexions

. 212
From Law and Technology to Norm

. 215
On the Nonexistence of Norms in the Culture of No Culture

. 220
Conclusion

. 225

Conclusion 226
The Cultural Consequences of Free Software

. 226

Two Bits Christopher M. Kelty iii

https://twobits.net
https://kelty.org/

Acknowledgement 233

Acknowledgment 234

Library of Congress 235

Library of Congress Catalog 236

Bibliography 237

Book Index 253

Index 254

Two Bits Christopher M. Kelty iv

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Dedication 2

To my parents, Anne and Ted 3

Two Bits Christopher M. Kelty 2

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Preface 4

This is a book about Free Software, also known as Open Source Software, and is 5

meant for anyone who wants to understand the cultural significance of Free Soft-
ware. Two Bits explains how Free Software works and how it emerged in tandem
with the Internet as both a technical and a social form. Understanding Free Software
in detail is the best way to understand many contentious and confusing changes re-
lated to the Internet, to ”commons,” to software, and to networks. Whether you
think first of e-mail, Napster, Wikipedia, MySpace, or Flickr; whether you think of
the proliferation of databases, identity thieves, and privacy concerns; whether you
think of traditional knowledge, patents on genes, the death of scholarly publishing,
or compulsory licensing of AIDS medicine; whether you think of MoveOn.org or net
neutrality or YouTubethe issues raised by these phenomena can be better under-
stood by looking carefully at the emergence of Free Software. [PAGEx]

Why? Because it is in Free Software and its history that the issues raisedfrom intel- 6

lectual property and piracy to online political advocacy and ”social” softwarewere
first figured out and confronted. Free Softwares roots stretch back to the 1970s and
crisscross the histories of the personal computer and the Internet, the peaks and
troughs of the information-technology and software industries, the transformation
of intellectual property law, the innovation of organizations and ”virtual” collabora-
tion, and the rise of networked social movements. Free Software does not explain
why these various changes have occurred, but rather how individuals and groups
are responding: by creating new things, new practices, and new forms of life. It is
these practices and forms of lifenot the software itselfthat are most significant, and
they have in turn served as templates that others can use and transform: practices
of sharing source code, conceptualizing openness, writing copyright (and copyleft)
licenses, coordinating collaboration, and proselytizing for all of the above. There
are explanations aplenty for why things are the way they are: its globalization, its
the network society, its an ideology of transparency, its the virtualization of work,
its the new flat earth, its Empire. We are drowning in the why, both popular and
scholarly, but starving for the how.

Understanding how Free Software works is not just an academic pursuit but an ex- 7

perience that transforms the lives and work of participants involved. Over the last
decade, in fieldwork with software programmers, lawyers, entrepreneurs, artists,
activists, and other geeks I have repeatedly observed that understanding how Free
Software works results in a revelation. Peopleeven (or, perhaps, especially) those
who do not consider themselves programmers, hackers, geeks, or technophilescome
out of the experience with something like religion, because Free Software is all about
the practices, not about the ideologies and goals that swirl on its surface. Free Soft-
ware and its creators and users are not, as a group, antimarket or anticommercial;
they are not, as a group, anti-intellectual property or antigovernment; they are not,
as a group, pro- or anti- anything. In fact, they are not really a group at all: not a cor-
poration or an organization; not an NGO or a government agency; not a professional
society or an informal horde of hackers; not a movement or a research project.

Free Software is, however, public; it is about making things public. This fact is key to 8

comprehending its cultural significance, its [PAGExi] appeal, and its proliferation. Free
Software is public in a particular way: it is a self-determining, collective, politically in-
dependent mode of creating very complex technical objects that are made publicly

Two Bits Christopher M. Kelty 3

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

and freely available to everyonea ”commons,” in common parlance. It is a practice
of working through the promises of equality, fairness, justice, reason, and argument
in a domain of technically complex software and networks, and in a context of pow-
erful, lopsided laws about intellectual property. The fact that something public in
this grand sense emerges out of practices so seemingly arcane is why the first urge
of many converts is to ask: how can Free Software be ”ported” to other aspects of
life, such as movies, music, science or medicine, civil society, and education? It is
this proselytizing urge and the ease with which the practices are spread that make
up the cultural significance of Free Software. For better or for worse, we may all be
using Free Software before we know it.

Two Bits Christopher M. Kelty 4

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Acknowledgements 9

Anthropology is dependent on strangers who become friends and colleaguesstrangers 10

who contribute the very essence of the work. In my case, these strangers are also
hyperaware of issues of credit, reputation, acknowledgment, reuse, and modifica-
tion of ideas and things. Therefore, the list is extensive and detailed.

Sean Doyle and Adrian Gropper opened the doors to this project, providing unpar- 11

alleled insight, hospitality, challenge, and curiosity. Axel Roch introduced me to
Volker Grassmuck, and to much else. Volker Grassmuck introduced me to Berlins
Free Software world and invited me to participate in the Wizards of OS conferences.
Udhay Shankar introduced me to almost everyone I know, sometimes after the fact.
Shiv Sastry helped me find lodging in Bangalore at his Aunt Anasuya Sastrys house,
which is called ”Silicon Valley” and which was truly a lovely place to stay. Bharath
Chari and Ram Sundaram let me haunt their office and cat-5 cables [PAGExiv] during
one of the more turbulent periods of their careers. Glenn Otis Brown visited, drank,
talked, invited, challenged, entertained, chided, encouraged, drove, was driven,
and gave and received advice. Ross Reedstrom welcomed me to the Rice Linux
Users Group and to Connexions. Brent Hendricks did yeomans work, suffering my
questions and intrusions. Geneva Henry, Jenn Drummond, Chuck Bearden, Kathy
Fletcher, Manpreet Kaur, Mark Husband, Max Starkenberg, Elvena Mayo, Joey King,
and Joel Thierstein have been welcoming and enthusiastic at every meeting. Sid Bur-
ris has challenged and respected my work, which has been an honor. Rich Baraniuk
listens to everything I say, for better or for worse; he is a magnificent collaborator
and friend.

James Boyle has been constantly supportive, for what feels like very little return 12

on investment. Very few people get to read and critique and help reshape the ar-
gument and structure of a book, and to appear in it as well. Mario Biagioli helped
me see the intricate strategy described in chapter 6. Stefan Helmreich read early
drafts and transformed my thinking about networks. Manuel DeLanda explained the
term assemblage to me. James Faubion corrected my thinking in chapter 2, helped
me immeasurably with the Protestants, and has been an exquisitely supportive col-
league and department chair. Mazyar Lotfalian and Melissa Cefkin provided their
apartment and library, in which I wrote large parts of chapter 1. Matt Price and
Michelle Murphy have listened patiently to me construct and reconstruct versions
of this book for at least six years. Tom and Elizabeth Landecker provided hospitality
and stunningly beautiful surroundings in which to rewrite parts of the book. Lisa
Gitelman read carefully and helped explain issues about documentation and ver-
sioning that I discuss in chapter 4. Matt Ratto read and commented on chapters 4-7,
convinced me to drop a useless distinction, and to clarify the conclusion to chapter
7. Shay David provided strategic insights about openness from his own work and
pushed me to explain the point of recursive publics more clearly. Biella Coleman
has been a constant interlocutor on the issues in this bookher contributions are too
deep, too various, and too thorough to detail. Her own work on Free Software and
hackers has been a constant sounding board and guide, and it has been a pleasure
to work together on our respective texts. Kim Fortun helped me figure it all out.
[PAGExv]

George Marcus hired me into a fantastic anthropology department and has had im- 13

mense faith in this project throughout its lifetime. Paul Rabinow, Stephen Collier,

Two Bits Christopher M. Kelty 5

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

and Andrew Lakoff have provided an extremely valuable settingthe Anthropology of
the Contemporary Research Collaboratorywithin which the arguments of this book
developed in ways they could not have as a solitary project. Joe Dumit has en-
couraged and prodded and questioned and brainstormed and guided and inspired.
Michael Fischer is the best mentor and advisor ever. He has read everything, has
written much that precedes and shapes this work, and has been an unwavering
supporter and friend throughout.

Tish Stringer, Michael Powell, Valerie Olson, Ala Alazzeh, Lina Dib, Angela Rivas, 14

Anthony Potoczniak, Ayla Samli, Ebru Kayaalp, Michael Kriz, Erkan Saka, Elise Mc-
Carthy, Elitza Ranova, Amanda Randall, Kris Peterson, Laura Jones, Nahal Naficy,
Andrea Frolic, and Casey ODonnell make my job rock. Scott McGill, Sarah Ellen-
zweig, Stephen Collier, Carl Pearson, Dan Wallach, Tracy Volz, Rich Doyle, Ussama
Makdisi, Elora Shehabbudin, Michael Morrow, Taryn Kinney, Gregory Kaplan, Jane
Greenberg, Hajime Nakatani, Kirsten Ostherr, Henning Schmidgen, Jason Danziger,
Kayte Young, Nicholas King, Jennifer Fishman, Paul Drueke, Roberta Bivins, Sherri
Roush, Stefan Timmermans, Laura Lark, and Susann Wilkinson either made Hous-
ton a wonderful place to be or provided an opportunity to escape it. I am especially
happy that Thom Chivens has done both and more.

The Center for the Study of Cultures provided me with a Faculty Fellowship in the fall 15

of 2003, which allowed me to accomplish much of the work in conceptualizing the
book. The Harvard History of Science Department and the MIT Program in History,
Anthropology, and Social Studies of Science and Technology hosted me in the spring
of 2005, allowing me to write most of chapters 7, 8, and 9. Rice University has been
extremely generous in all respects, and a wonderful place to work. Im most grateful
for a junior sabbatical that gave me the chance to complete much of this book. John
Hoffman graciously and generously allowed the use of the domain name twobits.net,
in support of Free Software. Ken Wissoker, Courtney Berger, and the anonymous
reviewers for Duke University Press have made this a much, much better book than
when I started. [PAGExvi]

My parents, Ted and Anne, and my brother, Kevin, have always been supportive 16

and loving; though they claim to have no idea what I do, I nonetheless owe my
small success to their constant support. Hannah Landecker has read and reread
and rewritten every part of this work; she has made it and me better, and I love her
dearly for it. Last, but not least, my new project, Ida Jane Kelty Landecker, is much
cuter and smarter and funnier than Two Bits, and I love her for distracting me from
it.

Two Bits Christopher M. Kelty 6

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Introduction 17

Introduction 18

Around 1998 Free Software emerged from a happily subterranean and obscure ex- 19

istence stretching back roughly twenty years. At the very pinnacle of the dotcom
boom, Free Software suddenly populated the pages of mainstream business journals,
entered the strategy and planning discussions of executives, confounded the radar
of political leaders and regulators around the globe, and permeated the conscious-
ness of a generation of technophile teenagers growing up in the 1990s wondering
how people ever lived without e-mail. Free Software appeared to be something
shocking, something that economic history suggested could never exist: a practice
of creating softwaregood softwarethat was privately owned, but freely and publicly
accessible. Free Software, as its ambiguous moniker suggests, is both free from
constraints and free of charge. Such characteristics seem to violate economic logic
and the principles of private ownership and individual autonomy, yet there are tens
of [pg2] millions of people creating this software and hundreds of millions more using
it. Why? Why now? And most important: how?

Free Software is a set of practices for the distributed collaborative creation of soft- 20

ware source code that is then made openly and freely available through a clever,
unconventional use of copyright law.1 But it is much more: Free Software exempli-
fies a considerable reorientation of knowledge and power in contemporary societya
reorientation of power with respect to the creation, dissemination, and authorization
of knowledge in the era of the Internet. This book is about the cultural significance of
Free Software, and by cultural I meanmuchmore than the exotic behavioral or sarto-
rial traits of software programmers, fascinating though they be. By culture, I mean
an ongoing experimental system, a space of modification and modulation, of figur-
ing out and testing; culture is an experiment that is hard to keep an eye on, one that
changes quickly and sometimes starkly. Culture as an experimental system crosses
economies and governments, networked social spheres, and the infrastructure of
knowledge and power within which our world functions todayor fails to. Free Soft-
ware, as a cultural practice, weaves together a surprising range of places, objects,
and people; it contains patterns, thresholds, and repetitions that are not simple or
immediately obvious, either to the geeks who make Free Software or to those who
want to understand it. It is my goal in this book to reveal some of those complex
patterns and thresholds, both historically and anthropologically, and to explain not
just what Free Software is but also how it has emerged in the recent past and will
continue to change in the near future.2

The significance of Free Software extends far beyond the arcane and detailed techni- 21

cal practices of software programmers and ”geeks” (as I refer to them herein). Since
about 1998, the practices and ideas of Free Software have extended into new realms

1A Note on Terminology: There is still debate about how to refer to Free Software, which is also
known as Open Source Software. The scholarly community has adopted either FOSS or FLOSS (or
F/LOSS): the former stands for the Anglo-American Free and Open Source Software; the latter stands
for the continental Free, Libre and Open Source Software. Two Bits sticks to the simple term Free
Software to refer to all of these things, except where it is specifically necessary to differentiate two
or more names, or to specify people or events so named. The reason is primarily aesthetic and
political, but Free Software is also the older term, as well as the one that includes issues of moral
and social order. I explain in chapter 3 why there are two terms.

2Michael M. J. Fischer, ”Culture and Cultural Analysis as Experimental Systems.”

Two Bits Christopher M. Kelty 7

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

of life and creativity: from software to music and film to science, engineering, and
education; from national politics of intellectual property to global debates about civil
society; from UNIX to Mac OS X and Windows; from medical records and databases
to international diseasemonitoring and synthetic biology; fromOpen Source to open
access. Free Software is no longer only about softwareit exemplifies a more general
reorientation of power and knowledge.

The terms Free Software and Open Source dont quite capture the extent of this 22

reorientation or their own cultural significance. They [pg3] refer, quite narrowly, to the
practice of creating softwarean activity many people consider to be quite far from
their experience. However, creating Free Software is more than that: it includes a
unique combination of more familiar practices that range from creating and policing
intellectual property to arguing about the meaning of ”openness” to organizing and
coordinating people and machines across locales and time zones. Taken together,
these practices make Free Software distinct, significant, and meaningful both to
those who create it and to those who take the time to understand how it comes into
being.

In order to analyze and illustrate the more general cultural significance of Free Soft- 23

ware and its consequences, I introduce the concept of a ”recursive public.” A recur-
sive public is a public that is vitally concerned with the material and practical main-
tenance and modification of the technical, legal, practical, and conceptual means
of its own existence as a public; it is a collective independent of other forms of con-
stituted power and is capable of speaking to existing forms of power through the
production of actually existing alternatives. Free Software is one instance of this
concept, both as it has emerged in the recent past and as it undergoes transfor-
mation and differentiation in the near future. There are other instances, including
those that emerge from the practices of Free Software, such as Creative Commons,
the Connexions project, and the Open Access movement in science. These latter
instances may or may not be Free Software, or even ”software” projects per se, but
they are connected through the same practices, and what makes them significant is
that they may also be ”recursive publics” in the sense I explore in this book. Recur-
sive publics, and publics generally, differ from interest groups, corporations, unions,
professions, churches, and other forms of organization because of their focus on
the radical technological modifiability of their own terms of existence. In any public
there inevitably arises a moment when the question of how things are said, who
controls the means of communication, or whether each and everyone is being prop-
erly heard becomes an issue. A legitimate public sphere is one that gives outsiders
a way in: they may or may not be heard, but they do not have to appeal to any
authority (inside or outside the organization) in order to have a voice.3 Such publics

3So, for instance, when a professional society founded on charters and ideals for membership and
qualification speaks as a public, it represents its members, as when the American Medical Association
argues for or against changes to Medicare. However, if a new groupsay, of nursesseeks not only to
participate in this discussionwhich may be possible, even welcomedbut to change the structure of
representation in order to give themselves status equal to doctors, this change is impossible, for it
goes against the very aims and principles of the society. Indeed, the nurses will be urged to form their
own society, not to join that of the doctors, a proposition which gives the lie to the existing structures
of power. By contrast, a public is an entity that is less controlled and hence more agonistic, such that
nurses might join, speak, and insist on changing the terms of debate, just as patients, scientists, or
homeless people might. Their success, however, depends entirely on the force with which their
actions transform the focus and terms of the public. Concepts of the public sphere have been
roundly critiqued in the last twenty years for presuming that such ”equality of access” is sufficient to

Two Bits Christopher M. Kelty 8

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

are not inherently modifiable, but are made soand maintainedthrough the practices
of participants. It is possible for Free Software as we know it to cease to be public,
or to become just one more settled [pg4] form of power, but my focus is on the recent
past and near future of something that is (for the time being) public in a radical and
novel way.

The concept of a recursive public is not meant to apply to any and every instance of 24

a publicit is not a replacement for the concept of a ”public sphere”but is intended
rather to give readers a specific and detailed sense of the non-obvious, but persis-
tent threads that form the warp and weft of Free Software and to analyze similar
and related projects that continue to emerge from it as novel and unprecedented
forms of publicity and political action.

At first glance, the thread tying these projects together seems to be the Internet. 25

And indeed, the history and cultural significance of Free Software has been intri-
cately mixed up with that of the Internet over the last thirty years. The Internet is a
unique platforman environment or an infrastructurefor Free Software. But the Inter-
net looks the way it does because of Free Software. Free Software and the Internet
are related like figure and ground or like system and environment; neither are stable
or unchanging in and of themselves, and there are a number of practical, technical,
and historical places where the two are essentially indistinguishable. The Internet
is not itself a recursive public, but it is something vitally important to that public,
something about which such publics care deeply and act to preserve. Throughout
this book, I will return to these three phenomena: the Internet, a heterogeneous and
diverse, though singular, infrastructure of technologies and uses; Free Software, a
very specific set of technical, legal, and social practices that now require the Inter-
net; and recursive publics, an analytic concept intended to clarify the relation of the
first two.

Both the Internet and Free Software are historically specific, that is, not just any old 26

newmedia or information technology. But the Internet is many, many specific things
to many, many specific people. As one reviewer of an early manuscript version of
this book noted, ”For most people, the Internet is porn, stock quotes, Al Jazeera clips
of executions, Skype, seeing pictures of the grandkids, porn, never having to buy
another encyclopedia, MySpace, e-mail, online housing listings, Amazon, Googling
potential romantic interests, etc. etc.” It is impossible to explain all of these things;
the meaning and significance of the proliferation of digital pornography is a very
different concern than that of the fall of the print encyclopedia [pg5] and the rise of
Wikipedia. Yet certain underlying practices relate these diverse phenomena to one
another and help explain why they have occurred at this time and in this technical,
legal, and social context. By looking carefully at Free Software and its modulations, I
suggest, one can come to a better understanding of the changes affecting pornogra-

achieve representation, when in fact other contextual factors (race, class, sex) inherently weight the
representative power of different participants. But these are two different and overlapping problems:
one cannot solve the problem of pernicious, invisible forms of inequality unless one first solves the
problem of ensuring a certain kind of structural publicity. It is precisely the focus on maintaining
publicity for a recursive public, over against massive and powerful corporate and governmental
attempts to restrict it, that I locate as the central struggle of Free Software. Gender certainly
influences who gets heard within Free Software, for example, but it is a mistake to focus on this
inequality at the expense of the larger, more threatening form of political failure that Free Software
addresses. And I think there are plenty of geeksman, woman and animalwho share this sentiment.

Two Bits Christopher M. Kelty 9

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

phy, Wikipedia, stock quotes, andmany other wonderful and terrifying things.4

Two Bits has three parts. Part I of this book introduces the reader to the concept of 27

recursive publics by exploring the lives, works, and discussions of an international
community of geeks brought together by their shared interest in the Internet. Chap-
ter 1 asks, in an ethnographic voice, ”Why do geeks associate with one another?”
The answertold via the story of Napster in 2000 and the standards process at the
heart of the Internetis that they are making a recursive public. Chapter 2 explores
the words and attitudes of geeks more closely, focusing on the strange stories they
tell (about the Protestant Reformation, about their practical everyday polymathy,
about progress and enlightenment), stories that make sense of contemporary po-
litical economy in sometimes surprising ways. Central to part I is an explication of
the ways in which geeks argue about technology but also argue with and through
it, by building, modifying, and maintaining the very software, networks, and legal
tools within which and by which they associate with one another. It is meant to
give the reader a kind of visceral sense of why certain arrangements of technology,
organization, and lawspecifically that of the Internet and Free Softwareare so vitally
important to these geeks.

Part II takes a step back from ethnographic engagement to ask, ”What is Free Soft- 28

ware and why has it emerged at this point in history?” Part II is a historically detailed
portrait of the emergence of Free Software beginning in 1998-99 and stretching back
in time as far as the late 1950s; it recapitulates part I by examining Free Software
as an exemplar of a recursive public. The five chapters in part II tell a coherent
historical story, but each is focused on a separate component of Free Software. The
stories in these chapters help distinguish the figure of Free Software from the ground
of the Internet. The diversity of technical practices, economic concerns, information
technologies, and legal and organizational practices is huge, and these five chap-
ters distinguish and describe the specific practices in their historical contexts and
settings: practices of [pg6] proselytizing and arguing, of sharing, porting, and fork-
ing source code, of conceptualizing openness and open systems, of creating Free
Software copyright, and of coordinating people and source code.

Part III returns to ethnographic engagement, analyzing two related projects inspired 29

by Free Software which modulate one or more of the five components discussed
in part II, that is, which take the practices as developed in Free Software and ex-
periment with making something new and different. The two projects are Creative
Commons, a nonprofit organization that creates copyright licenses, and Connex-
ions, a project to develop an online scholarly textbook commons. By tracing the
modulations of practices in detail, I ask, ”Are these projects still Free Software?”
and ”Are these projects still recursive publics?” The answer to the first questions re-
veals how Free Softwares flexible practices are influencing specific forms of practice
far from software programming, while the answer to the second question helps ex-
plain how Free Software, Creative Commons, Connexions, and projects like them are
all related, strategic responses to the reorientation of power and knowledge. The
conclusion raises a series of questions intended to help scholars looking at related

4Wikipedia is perhaps the most widely known and generally familiar example of what this book is
about. Even though it is not identified as such, it is in fact a Free Software project and a ”modulation”
of Free Software as I describe it here. The non-technically inclined reader might keep Wikipedia in
mind as an example with which to follow the argument of this book. I will return to it explicitly in part
3. However, for better or for worse, there will be no discussion of pornography.

Two Bits Christopher M. Kelty 10

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

phenomena.

Recursive Publics and the Reorientation of Power and Knowledge 30

Governance and control of the creation and dissemination of knowledge have changed 31

considerably in the context of the Internet over the last thirty years. Nearly all
kinds of media are easier to produce, publish, circulate, modify, mash-up, remix, or
reuse. The number of such creations, circulations, and borrowings has exploded,
and the tools of knowledge creation and circulationsoftware and networkshave also
become more and more pervasively available. The results have also been explosive
and include anxieties about validity, quality, ownership and control, moral panics
galore, and new concerns about the shape and legitimacy of global ”intellectual
property” systems. All of these concerns amount to a reorientation of knowledge
and power that is incomplete and emergent, and whose implications reach directly
into the heart of the legitimacy, certainty, reliability and especially the finality and
temporality of [pg7] the knowledge and infrastructures we collectively create. It is
a reorientation at once more specific and more general than the grand diagnostic
claims of an ”information” or ”network” society, or the rise of knowledge work or
knowledge-based economies; it is more specific because it concerns precise and
detailed technical and legal practices, more general because it is a cultural reorien-
tation, not only an economic or legal one.

Free Software exemplifies this reorientation; it is not simply a technical pursuit but 32

also the creation of a ”public,” a collective that asserts itself as a check on other con-
stituted forms of powerlike states, the church, and corporationsbut which remains
independent of these domains of power.5 Free Software is a response to this reori-
entation that has resulted in a novel form of democratic political action, a means by
which publics can be created and maintained in forms not at all familiar to us from
the past. Free Software is a public of a particular kind: a recursive public. Recursive
publics are publics concerned with the ability to build, control, modify, and main-
tain the infrastructure that allows them to come into being in the first place and
which, in turn, constitutes their everyday practical commitments and the identities
of the participants as creative and autonomous individuals. In the cases explored
herein, that specific infrastructure includes the creation of the Internet itself, as
well as its associated tools and structures, such as Usenet, e-mail, the World Wide
Web (www), UNIX and UNIX-derived operating systems, protocols, standards, and
standards processes. For the last thirty years, the Internet has been the subject of a
contest in which Free Software has been both a central combatant and an important
architect.

By calling Free Software a recursive public, I am doing two things: first, I am drawing 33

attention to the democratic and political significance of Free Software and the Inter-
net; and second, I am suggesting that our current understanding (both academic
and colloquial) of what counts as a self-governing public, or even as ”the public,”
is radically inadequate to understanding the contemporary reorientation of knowl-
edge and power. The first case is easy to make: it is obvious that there is something

5Although the term public clearly suggests private as its opposite, Free Software is not
anticommercial. A very large amount of money, both real and notional, is involved in the creation of
Free Software. The term recursive [PAGE313] market could also be used, in order to emphasize the
importance (especially during the 1990s) of the economic features of the practice. The point is not
to test whether Free Software is a ”public” or a ”market,” but to construct a concept adequate to the
practices that constitute it.

Two Bits Christopher M. Kelty 11

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

political about Free Software, but most casual observers assume, erroneously, that
it is simply an ideological stance and that it is anti-intellectual property or technolib-
ertarian. I hope to show how geeks do not start with ideologies, but instead come
to them through their involvement in the [pg8] practices of creating Free Software
and its derivatives. To be sure, there are ideologues aplenty, but there are far more
people who start out thinking of themselves as libertarians or liberators, but who
become something quite different through their participation in Free Software.

The second case is more complex: why another contribution to the debate about 34

the public and public spheres? There are two reasons I have found it necessary to
invent, and to attempt to make precise, the concept of a recursive public: the first
is to signal the need to include within the spectrum of political activity the creation,
modification, and maintenance of software, networks, and legal documents. Cod-
ing, hacking, patching, sharing, compiling, and modifying of software are forms of
political action that now routinely accompany familiar political forms of expression
like free speech, assembly, petition, and a free press. Such activities are expres-
sive in ways that conventional political theory and social science do not recognize:
they can both express and ”implement” ideas about the social and moral order of
society. Software and networks can express ideas in the conventional written sense
as well as create (express) infrastructures that allow ideas to circulate in novel and
unexpected ways. At an analytic level, the concept of a recursive public is a way
of insisting on the importance to public debate of the unruly technical materiality
of a political order, not just the embodied discourse (however material) about that
order. Throughout this book, I raise the question of how Free Software and the Inter-
net are themselves a public, as well as what that public actually makes, builds, and
maintains.

The second reason I use the concept of a recursive public is that conventional publics 35

have been described as ”self-grounding,” as constituted only through discourse in
the conventional sense of speech, writing, and assembly.6 Recursive publics are
”recursive” not only because of the ”self-grounding” of commitments and identities
but also because they are concerned with the depth or strata of this self-grounding:
the layers of technical and legal infrastructure which are necessary for, say, the
Internet to exist as the infrastructure of a public. Every act of self-grounding that
constitutes a public relies in turn on the existence of a medium or ground through
which communication is possiblewhether face-to-face speech, epistolary communi-
cation, or net-based assemblyand recursive publics relentlessly question the status
of these media, suggesting [pg9] that they, too, must be independent for a public
to be authentic. At each of these layers, technical and legal and organizational de-
cisions can affect whether or not the infrastructure will allow, or even ensure, the
continued existence of the recursive publics that are concerned with it. Recursive
publics independence from power is not absolute; it is provisional and structured
in response to the historically constituted layering of power and control within the
infrastructures of computing and communication.

For instance, a very important aspect of the contemporary Internet, and one that 36

has been fiercely disputed (recently under the banner of ”net neutrality”), is its
singularity: there is only one Internet. This was not an inevitable or a technically
determined outcome, but the result of a contest in which a series of decisions were

6See, for example, Warner, Publics and Counterpublics, 67-74.

Two Bits Christopher M. Kelty 12

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

made about layers ranging from the very basic physical configuration of the Inter-
net (packet-switched networks and routing systems indifferent to data types), to
the standards and protocols that make it work (e.g., TCP/IP or DNS), to the applica-
tions that run on it (e-mail, www, ssh). The outcome of these decisions has been to
privilege the singularity of the Internet and to champion its standardization, rather
than to promote its fragmentation into multiple incompatible networks. These same
kinds of decisions are routinely discussed, weighed, and programmed in the activ-
ity of various Free Software projects, as well as its derivatives. They are, I claim,
decisions embedded in imaginations of order that are simultaneously moral and
technical.

By contrast, governments, corporations, nongovernmental organizations (NGOs), 37

and other institutions have plenty of reasonsprofit, security, controlto seek to frag-
ment the Internet. But it is the check on this power provided by recursive publics
and especially the practices that now make up Free Software that has kept the In-
ternet whole to date. It is a check on power that is by no means absolute, but is
nonetheless rigorously and technically concerned with its legitimacy and indepen-
dence not only from state-based forms of power and control, but from corporate,
commercial, and nongovernmental power as well. To the extent that the Internet
is public and extensible (including the capability of creating private subnetworks),
it is because of the practices discussed herein and their culmination in a recursive
public.

Recursive publics respond to governance by directly engaging in, maintaining, and 38

often modifying the infrastructure they seek, as a [pg10] public, to inhabit and exten-
dand not only by offering opinions or protesting decisions, as conventional publics
do (in most theories of the public sphere). Recursive publics seek to create what
might be understood, enigmatically, as a constantly ”self-leveling” level playing
field. And it is in the attempt to make the playing field self-leveling that they con-
front and resist forms of power and control that seek to level it to the advantage
of one or another large constituency: state, government, corporation, profession. It
is important to understand that geeks do not simply want to level the playing field
to their advantagethey have no affinity or identity as such. Instead, they wish to
devise ways to give the playing field a certain kind of agency, effected through the
agency of many different humans, but checked by its technical and legal structure
and openness. Geeks do not wish to compete qua capitalists or entrepreneurs un-
less they can assure themselves that (qua public actors) that they can compete
fairly. It is an ethic of justice shot through with an aesthetic of technical elegance
and legal cleverness.

The fact that recursive publics respond in this waythrough direct engagement and 39

modificationis a key aspect of the reorientation of power and knowledge that Free
Software exemplifies. They are reconstituting the relationship between liberty and
knowledge in a technically and historically specific context. Geeks create and mod-
ify and argue about licenses and source code and protocols and standards and re-
vision control and ideologies of freedom and pragmatism not simply because these
things are inherently or universally important, but because they concern the rela-
tionship of governance to the freedom of expression and nature of consent. Source
code and copyright licenses, revision control and mailing lists are the pamphlets,
coffeehouses, and salons of the twenty-first century: Tischgesellschaften become

Two Bits Christopher M. Kelty 13

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Schreibtischgesellschaften.7

The ”reorientation of power and knowledge” has two key aspects that are part of the 40

concept of recursive publics: availability and modifiability (or adaptability). Avail-
ability is a broad, diffuse, and familiar issue. It includes things like transparency,
open governance or transparent organization, secrecy and freedom of information,
and open access in science. Availability includes the business-school theories of
”disintermediation” and ”transparency and accountability” and the spread of ”audit
culture” and so-called neoliberal regimes of governance; it is just as often the sub-
ject of suspicion as it is a kind of moral mandate, as in the case of open [pg11] access
to scientific results and publications.8 All of these issues are certainly touched on
in detailed and practical ways in the creation of Free Software. Debates about the
mode of availability of information made possible in the era of the Internet range
from digital-rights management and copy protection, to national security and cor-
porate espionage, to scientific progress and open societies.

However, it is modifiability that is the most fascinating, and unnerving, aspect of the 41

reorientation of power and knowledge. Modifiability includes the ability not only to
accessthat is, to reuse in the trivial sense of using something without restrictionsbut
to transform it for use in new contexts, to different ends, or in order to participate
directly in its improvement and to redistribute or recirculate those improvements
within the same infrastructures while securing the same rights for everyone else. In
fact, the core practice of Free Software is the practice of reuse and modification of
software source code. Reuse and modification are also the key ideas that projects
modeled on Free Software (such as Connexions and Creative Commons) see as their
goal. Creative Commons has as its motto ”Culture always builds on the past,” and
they intend that to mean ”through legal appropriation and modification.” Connex-
ions, which allows authors to create online bits and pieces of textbooks explicitly
encourages authors to reuse work by other people, to modify it, and to make it their
own. Modifiability therefore raises a very specific and important question about fi-
nality. When is something (software, a film, music, culture) finished? How long does
it remain finished? Who decides? Or more generally, what does its temporality look
like, and how does that temporality restructure political relationships? Such issues
are generally familiar only to historians and literary scholars who understand the
transformation of canons, the interplay of imitation and originality, and the theo-
retical questions raised, for instance, in textual scholarship. But the contemporary
meaning of modification includes both a vast increase in the speed and scope of
modifiability and a certain automation of the practice that was unfamiliar before
the advent of sophisticated, distributed forms of software.

Modifiability is an oft-claimed advantage of Free Software. It can be updated, mod- 42

ified, extended, or changed to deal with other changing environments: new hard-
ware, new operating systems, unforeseen technologies, or new laws and practices.
At an infrastructural level, such modifiability makes sense: it is a response to [pg12]

and an alternative to technocratic forms of planning. It is a way of planning in the
ability to plan out; an effort to continuously secure the ability to deal with surprise
and unexpected outcomes; a way of making flexible, modifiable infrastructures like

7Habermas, The Structural Transformation of the Public Sphere, esp. 27-43.
8Critiques of the demand for availability and the putatively inherent superiority of transparency

include Coombe and Herman, ”Rhetorical Virtues” and ”Your Second Life?”; Christen, ”Gone Digital”;
and Anderson and Bowery, ”The Imaginary Politics of Access to Knowledge.”

Two Bits Christopher M. Kelty 14

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

the Internet as safe as permanent, inflexible ones like roads and bridges.

But what is the cultural significance of modifiability? What does it mean to plan in 43

modifiability to culture, tomusic, to education and science? At a clerical level, such a
question is obvious whenever a scholar cannot recover a document written in Word-
Perfect 2.0 or on a disk for which there are no longer disk drives, or when a library
archive considers saving both the media and the machines that read that media.
Modifiability is an imperative for building infrastructures that can last longer. How-
ever, it is not only a solution to a clerical problem: it creates new possibilities and
new problems for long-settled practices like publication, or the goals and structure
of intellectual-property systems, or the definition of the finality, lifetime, monumen-
tality, and especially, the identity of a work. Long-settled, seemingly unassailable
practiceslike the authority of published books or the power of governments to con-
trol informationare suddenly confounded and denaturalized by the techniques of
modifiability.

Over the last ten to fifteen years, as the Internet has spread exponentially and insin- 44

uated itself into the most intimate practices of all kinds of people, the issues of avail-
ability and modifiability and the reorientation of knowledge and power they signify
have become commonplace. As this has happened, the significance and practices
associated with Free Software have also spreadand been modulated in the process.
These practices provide a material and meaningful starting point for an array of re-
cursive publics who play with, modulate, and transform them as they debate and
build new ways to share, create, license, and control their respective productions.
They do not all share the same goals, immediate or long-term, but by engaging in
the technical, legal, and social practices pioneered in Free Software, they do in fact
share a ”social imaginary” that defines a particular relationship between technology,
organs of governance (whether state, corporate, or nongovernmental), and the In-
ternet. Scientists in a lab or musicians in a band; scholars creating a textbook or
social movements contemplating modes of organization and protest; government
bureaucrats issuing data or journalists investigating corruption; corporations that
manage [pg13] personal data or co-ops that monitor community developmentall these
groups and others may find themselves adopting, modulating, rejecting, or refining
the practices that have made up Free Software in the recent past and will do so in
the near future.

Experiment and Modulation 45

What exactly is Free Software? This question is, perhaps surprisingly, an incredibly 46

common one in geek life. Debates about definition and discussions and denunci-
ations are ubiquitous. As an anthropologist, I have routinely participated in such
discussions and debates, and it is through my immediate participation that Two Bits
opens. In part I I tell stories about geeks, stories that are meant to give the reader
that classic anthropological sense of being thrown into another world. The stories
reveal several general aspects of what geeks talk about and how they do so, without
getting into what Free Software is in detail. I start in this way because my project
started this way. I did not initially intend to study Free Software, but it was impos-
sible to ignore its emergence and manifest centrality to geeks. The debates about
the definition of Free Software that I participated in online and in the field eventually
led me away from studying geeks per se and turned me toward the central research
concern of this book: what is the cultural significance of Free Software?

Two Bits Christopher M. Kelty 15

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

In part II what I offer is not a definition of Free Software, but a history of how it came 47

to be. The story begins in 1998, with an important announcement by Netscape
that it would give away the source code to its main product, Netscape Navigator,
and works backward from this announcement into the stories of the UNIX operat-
ing system, ”open systems,” copyright law, the Internet, and tools for coordinating
people and code. Together, these five stories constitute a description of how Free
Software works as a practice. As a cultural analysis, these stories highlight just how
experimental the practices are, and how individuals keep track of and modulate the
practices along the way.

Netscapes decision came at an important point in the life of Free Software. It was 48

at just this moment that Free Software was becoming aware of itself as a coher-
ent movement and not just a diverse amalgamation of projects, tools, or practices.
Ironically, this [pg14] recognition also betokened a split: certain parties started to in-
sist that the movement be called ”Open Source” software instead, to highlight the
practical over the ideological commitments of the movement. The proposal itself un-
leashed an enormous public discussion about what defined Free Software (or Open
Source). This enigmatic event, in which a movement became aware of itself at the
same time that it began to question its mission, is the subject of chapter 3. I use
the term movement to designate one of the five core components of Free Software:
the practices of argument and disagreement about the meaning of Free Software.
Through these practices of discussion and critique, the other four practices start
to come into relief, and participants in both Free Software and Open Source come
to realize something surprising: for all the ideological distinctions at the level of
discourse, they are doing exactly the same thing at the level of practice. The affect-
laden histrionics with which geeks argue about the definition of what makes Free
Software free or Open Source open can be matched only by the sober specificity of
the detailed practices they share.

The second component of Free Software is just such a mundane activity: sharing 49

source code (chapter 4). It is an essential and fundamentally routine practice, but
one with a history that reveals the goals of software portability, the interactions of
commercial and academic software development, and the centrality of source code
(and not only of abstract concepts) in pedagogical settings. The details of ”sharing”
source code also form the story of the rise and proliferation of the UNIX operating
system and its myriad derivatives.

The third component, conceptualizing openness (chapter 5), is about the specific 50

technical and ”moral” meanings of openness, especially as it emerged in the 1980s
in the computer industrys debates over ”open systems.” These debates concerned
the creation of a particular infrastructure, including both technical standards and
protocols (a standard UNIX and protocols for networks), and an ideal market infras-
tructure that would allow open systems to flourish. Chapter 5 is the story of the
failure to achieve a market infrastructure for open systems, in part due to a signifi-
cant blind spot: the role of intellectual property.

The fourth component, applying copyright (and copyleft) licenses (chapter 6), in- 51

volves the problem of intellectual property as it faced programmers and geeks in
the late 1970s and early 1980s. In this [pg15] chapter I detail the story of the first
Free Software licensethe GNU General Public License (GPL)which emerged out of a
controversy around a very famous piece of software called EMACS. The controversy

Two Bits Christopher M. Kelty 16

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

is coincident with changing laws (in 1976 and 1980) and changing practices in the
software industrya general drift from trade secret to copyright protectionand it is
also a story about the vaunted ”hacker ethic” that reveals it in its native practical
setting, rather than as a rarefied list of rules.

The fifth component, the practice of coordination and collaboration (chapter 7), is 52

the most talked about: the idea of tens or hundreds of thousands of people volun-
teering their time to contribute to the creation of complex software. In this chapter I
show how novel forms of coordination developed in the 1990s and how they worked
in the canonical cases of Apache and Linux; I also highlight how coordination facil-
itates the commitment to adaptability (or modifiability) over against planning and
hierarchy, and how this commitment resolves the tension between individual virtu-
osity and the need for collective control.

Taken together, these five components make up Free Softwarebut they are not a 53

definition. Within each of these five practices, many similar and dissimilar activities
might reasonably be included. The point of such a redescription of the practices
of Free Software is to conceptualize them as a kind of collective technical experi-
mental system. Within each component are a range of differences in practice, from
conventional to experimental. At the center, so to speak, are the most common
and accepted versions of a practice; at the edges are more unusual or controver-
sial versions. Together, the components make up an experimental system whose
infrastructure is the Internet and whose ”hypotheses” concern the reorientation of
knowledge and power.

For example, one can hardly have Free Software without source code, but it need 54

not be written in C (though the vast majority of it is); it can be written in Java or
perl or TeX. However, if one stretches the meaning of source code to include music
(sheet music as source and performance as binary), what happens? Is this still Free
Software? What happens when both the sheet and the performance are ”born digi-
tal”? Or, to take a different example, Free Software requires Free Software licenses,
but the terms of these licenses are often changed and often heatedly discussed and
vigilantly policed by geeks. What degree of change removes a license [pg16] from the
realm of Free Software and why? How much flexibility is allowed?

Conceived this way, Free Software is a system of thresholds, not of classification; 55

the excitement that participants and observers sense comes from the modulation
(experimentation) of each of these practices and the subsequent discovery of where
the thresholds are. Many, many people have written their own ”Free Software” copy-
right licenses, but only some of them remain within the threshold of the practice as
defined by the system. Modulations happen whenever someone learns how some
component of Free Software works and asks, ”Can I try these practices out in some
other domain?”

The reality of constant modulationmeans that these five practices do not define Free 56

Software once and for all; they define it with respect to its constitution in the con-
temporary. It is a set of practices defined ”around the point” 1998-99, an intensive
coordinate space that allows one to explore Free Softwares components prospec-
tively and retrospectively: into the near future and the recent past. Free Software is
a machine for charting the (re)emergence of a problematic of power and knowledge
as it is filtered through the technical realities of the Internet and the political and
economic configuration of the contemporary. Each of these practices has its own

Two Bits Christopher M. Kelty 17

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

temporality of development and emergence, but they have recently come together
into this full house called either Free Software or Open Source.9

Viewing Free Software as an experimental system has a strategic purpose in Two 57

Bits. It sets the stage for part III, wherein I ask what kinds of modulations might no
longer qualify as Free Software per se, but still qualify as recursive publics. It was
around 2000 that talk of ”commons” began to percolate out of discussions about
Free Software: commons in educational materials, commons in biodiversity mate-
rials, commons in music, text, and video, commons in medical data, commons in
scientific results and data.10 On the one hand, it was continuous with interest in
creating ”digital archives” or ”online collections” or ”digital libraries”; on the other
hand, it was a conjugation of the digital collection with the problems and practices
of intellectual property. The very term commonsat once a new name and a theo-
retical object of investigationwas meant to suggest something more than simply a
collection, whether of [pg17] digital objects or anything else; it wasmeant to signal the
public interest, collective management, and legal status of the collection.11

In part III, I look in detail at two ”commons” understood as modulations of the com- 58

ponent practices of Free Software. Rather than treating commons projects simply
as metaphorical or inspirational uses of Free Software, I treat them as modulations,
which allows me to remain directly connected to the changing practices involved.
The goal of part III is to understand how commons projects like Connexions and
Creative Commons breach the thresholds of these practices and yet maintain some-
thing of the same orientation. What changes, for instance, have made it possible
to imagine new forms of free content, free culture, open source music, or a science
commons? What happens as new communities of people adopt and modulate the
five component practices? Do they also become recursive publics, concerned with
the maintenance and expansion of the infrastructures that allow them to come into
being in the first place? Are they concerned with the implications of availability and
modifiability that continue to unfold, continue to be figured out, in the realms of
education, music, film, science, and writing?

The answers in part III make clear that, so far, these concerns are alive and well in 59

the modulations of Free Software: Creative Commons and Connexions each strug-
9This description of Free Software could also be called an ”assemblage.” The most recent source

for this is Rabinow, Anthropos Today. The language of thresholds and intensities is most clearly
developed by Manuel DeLanda in A Thousand Years of Non-linear History and in Intensive Science
and Virtual Philosophy. The term problematization, from Rabinow (which he channels from Foucault),
is a synonym for the phrase ”reorientation of knowledge and power” as I use it here.
10See Kelty, ”Cultures Open Sources.”
11The genealogy of the term commons has a number of sources. An obvious source is Garrett
Hardins famous 1968 article ”The Tragedy of the Commons.” James Boyle has done more than
anyone to specify the term, especially during a 2001 conference on the public domain, which
included the inspired guest-list juxtaposition of the appropriation-happy musical collective
Negativland and the dame of ”commons” studies, Elinor Ostrom, whose book Governing the
Commons has served as a certain inspiration for thinking about commons versus public domains.
Boyle, for his part, has ceaselessly pushed the ”environmental” metaphor of speaking for the public
domain as environmentalists of the 1960s and 1970s spoke for the environment (see Boyle, ”The
Second Enclosure Movement and the Construction of the Public Domain” and ”A Politics of
Intellectual Property”). The term commons is useful in this context precisely because it distinguishes
the ”public domain” as an imagined object of pure public transaction and coordination, as opposed
to a ”commons,” which can consist of privately owned things/spaces that are managed in such a
fashion that they effectively function like a ”public domain” is imagined to (see Boyle, ”The Public
Domain”; Hess and Ostrom, Understanding Knowledge as a Commons).

Two Bits Christopher M. Kelty 18

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

gle to come to terms with new ways of creating, sharing, and reusing content in the
contemporary legal environment, with the Internet as infrastructure. Chapters 8
and 9 provide a detailed analysis of a technical and legal experiment: a modulation
that begins with source code, but quickly requires modulations in licensing arrange-
ments and forms of coordination. It is here that Two Bits provides the most detailed
story of figuring out set against the background of the reorientation of knowledge
and power. This story is, in particular, one of reuse, of modifiability and the problems
that emerge in the attempt to build it into the everyday practices of pedagogical
writing and cultural production of myriad forms. Doing so leads the actors involved
directly to the question of the existence and ontology of norms: norms of scholarly
production, borrowing, reuse, citation, reputation, and ownership. These last chap-
ters open up questions about the stability of modern knowledge, not as an archival
or a legal problem, but as a social and normative one; they raise questions about
the invention and control of norms, and the forms of life that may emerge from
these [pg18] practices. Recursive publics come to exist where it is clear that such
invention and control need to be widely shared, openly examined, and carefully
monitored.

Three Ways of Looking at Two Bits 60

Two Bits makes three kinds of scholarly contributions: empirical, methodological, 61

and theoretical. Because it is based largely on fieldwork (which includes historical
and archival work), these three contributions are often mixed up with each other.
Fieldwork, especially in cultural and social anthropology in the last thirty years, has
come to be understood less and less as one particular tool in a methodological
toolbox, and more and more as distinctive mode of epistemological encounter.12
The questions I began with emerged out of science and technology studies, but
they might end up making sense to a variety of fields, ranging from legal studies to
computer science.

Empirically speaking, the actors in my stories are figuring something out, something 62

unfamiliar, troubling, imprecise, and occasionally shocking to everyone involved
at different times and to differing extents.13 There are two kinds of figuring-out
stories: the contemporary ones in which I have been an active participant (those
of Connexions and Creative Commons), and the historical ones conducted through
”archival” research and rereading of certain kinds of texts, discussions, and analyses-
at-the-time (those of UNIX, EMACS, Linux, Apache, and Open Systems). Some are
stories of technical figuring out, but most are stories of figuring out a problem that
appears to have emerged. Some of these stories involve callow and earnest actors,
some involve scheming and strategy, but in all of them the figuring out is presented
”in the making” and not as something that can be conveniently narrated as obvious
and uncontested with the benefit of hindsight. Throughout this book, I tell stories

12Marcus and Fischer, Anthropology as Cultural Critique; Marcus and Clifford, Writing Culture;
Fischer, Emergent Forms of Life and the Anthropological Voice; Marcus, Ethnography through Thick
and Thin; Rabinow, Essays on the Anthropology of Reason and Anthropos Today.
13The language of ”figuring out” has its immediate source in the work of Kim Fortun, ”Figuring Out
Ethnography.” Fortuns work refines two other sources, the work of Bruno Latour in Science in Action
and that of Hans-Jorg Rheinberger in Towards History of Epistemic Things. Latour describes the
difference between ”science made” and ”science in the making” and how the careful analysis of new
objects can reveal how they come to be. Rheinberger extends this approach through analysis of the
detailed practices involved in figuring out a new object or a new processpractices which participants
cannot quite name or explain in precise terms until after the fact.

Two Bits Christopher M. Kelty 19

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

that illustrate what geeks are like in some respects, but, more important, that show
them in the midst of figuring things outa practice that can happen both in discussion
and in the course of designing, planning, executing, writing, debugging, hacking,
and fixing.

There are also myriad ways in which geeks narrate their own actions to themselves 63

and others, as they figure things out. Indeed, [pg19] there is no crisis of representing
the other here: geeks are vocal, loud, persistent, and loquacious. The superalterns
can speak for themselves. However, such representations should not necessarily be
taken as evidence that geeks provide adequate analytic or critical explanations of
their own actions. Some of the available writing provides excellent description, but
distracting analysis. Eric Raymonds work is an example of such a combination.14
Over the course of my fieldwork, Raymonds work has always been present as an
excellent guide to the practices and questions that plague geeksmuch like a clas-
sic ”principal informant” in anthropology. And yet his analyses, which many geeks
subscribe to, are distracting. They are fanciful, occasionally enjoyable and enlight-
eningbut they are not about the cultural significance of Free Software. As such I am
less interested in treating geeks as natives to be explained and more interested in
arguing with them: the people in Two Bits are a sine qua non of the ethnography,
but they are not the objects of its analysis.15

Because the stories I tell here are in fact recent by the standards of historical schol- 64

arship, there is not much by way of comparison in terms of the empirical material.
I rely on a number of books and articles on the history of the early Internet, espe-
cially Janet Abbates scholarship and the single historical work on UNIX, Peter Saluss
A Quarter Century of Unix.16 There are also a couple of excellent journalistic works,
such as Glyn Moodys Rebel Code: Inside Linux and the Open Source Revolution
(which, like Two Bits, relies heavily on the novel accessibility of detailed discussions
carried out on public mailing lists). Similarly, the scholarship on Free Software and its
history is just starting to establish itself around a coherent set of questions.17

14Raymond, The Cathedral and the Bazaar.
15The literature on ”virtual communities,” ”online communities,” the culture of hackers and geeks,
or the social study of information technology offers important background information, although it is
not the subject of this book. A comprehensive review of work in anthropology and related disciplines
is Wilson and Peterson, ”The Anthropology of Online Communities.” Other touchstones are Miller and
Slater, The Internet; Carla Freeman, High Tech and High Heels in the Global Economy; Hine, Virtual
Ethnography; Kling, Computerization and Controversy; Star, The Cultures of Computing; Castells,
The Rise of the Network Society; Boczkowski, Digitizing the News. Most social-science work in
information technology has dealt with questions of inequality and the so-called digital divide, an
excellent overview being DiMaggio et al., ”From Unequal Access to Differentiated Use.” Beyond
works in anthropology and science studies, a number of works from various other disciplines have
recently taken up similar themes, especially Adrian MacKenzie, Cutting Code; Galloway, Protocol; Hui
Kyong Chun, Control and Freedom; and Liu, Laws of Cool. By contrast, if social-science studies of
information technology are set against a background of historical and ethnographic studies of
”figuring out” problems of specific information technologies, software, or networks, then the
literature is sparse. Examples of anthropology and science studies of figuring out include Barry,
Political Machines; Hayden, When Nature Goes Public; and Fortun, Advocating Bhopal. Matt Ratto
has also portrayed this activity in Free Software in his dissertation, ”The Pressure of Openness.”
16In addition to Abbate and Salus, see Norberg and ONeill, Transforming Computer Technology;
Naughton, A Brief History of the Future; Hafner, Where Wizards Stay Up Late; Waldrop, The Dream
Machine; Segaller, Nerds 2.0.1. For a classic autodocumentation of one aspect of the Internet, see
Hauben and Hauben, Netizens.
17Kelty, ”Cultures Open Sources”; Coleman, ”The Social Construction of Freedom”; Ratto, ”The
Pressure of Openness”; Joseph Feller et al., Perspectives [pg315] on Free and Open Source Software;

Two Bits Christopher M. Kelty 20

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Methodologically, Two Bits provides an example of how to study distributed phe- 65

nomena ethnographically. Free Software and the Internet are objects that do not
have a single geographic site at which they can be studied. Hence, this work is
multisited in the simple sense of having multiple sites at which these objects were
investigated: Boston, Bangalore, Berlin, Houston. It was conducted among particu-
lar people, projects, and companies and at conferences and online gatherings too
numerous to list, but it has not been a study of a single Free Software project dis-
tributed around the globe. In all of these places and projects the geeks I worked
with were randomly and loosely affiliated people with diverse lives and histories.
Some [pg20] identified as Free Software hackers, but most did not. Some had never
met each other in real life, and some had. They represented multiple corporations
and institutions, and came from diverse nations, but they nonetheless shared a cer-
tain set of ideas and idioms that made it possible for me to travel from Boston to
Berlin to Bangalore and pick up an ongoing conversation with different people, in
very different places, without missing a beat.

The study of distributed phenomena does not necessarily imply the detailed, local 66

study of each instance of a phenomenon, nor does it necessitate visiting every rele-
vant geographical siteindeed, such a project is not only extremely difficult, but con-
fuses map and territory. As Max Weber put it, ”It is not the actual inter-connection
of things but the conceptual inter-connection of problems that define the scope of
the various sciences.”18 The decisions about where to go, whom to study, and how
to think about Free Software are arbitrary in the precise sense that because the
phenomena are so widely distributed, it is possible to make any given node into a
source of rich and detailed knowledge about the distributed phenomena itself, not
only about the local site. Thus, for instance, the Connexions project would probably
have remained largely unknown to me had I not taken a job in Houston, but it nev-
ertheless possesses precise, identifiable connections to the other sites and sets of
people that I have studied, and is therefore recognizable as part of this distributed
phenomena, rather than some other. I was actively looking for something like Con-
nexions in order to ask questions about what was becoming of Free Software and
how it was transforming. Had there been no Connexions in my back yard, another
similar field site would have served instead.

It is in this sense that the ethnographic object of this study is not geeks and not any 67

particular project or place or set of people, but Free Software and the Internet. Even
more precisely, the ethnographic object of this study is ”recursive publics”except
that this concept is also the work of the ethnography, not its preliminary object. I
could not have identified ”recursive publics” as the object of the ethnography at
the outset, and this is nice proof that ethnographic work is a particular kind of epis-
temological encounter, an encounter that requires considerable conceptual work
during and after the material labor of fieldwork, and throughout the material labor
of writing and rewriting, in order to make sense of and reorient it into a question

see also ⌜ http://freesoftware.mit.edu/ ⌟ , organized by Karim Lakhani, which is a large collection of
work on Free Software projects. Early work in this area derived both from the writings of practitioners
such as Raymond and from business and management scholars who noticed in Free Software a
remarkable, surprising set of seeming contradictions. The best of these works to date is Steven
Weber, The Success of Open Source. Webers conclusions are similar to those presented here, and he
has a kind of cryptoethnographic familiarity (that he does not explicitly avow) with the actors and
practices. Yochai Benklers Wealth of Networks extends and generalizes some of Webers argument.
18Max Weber, ”Objectivity in the Social Sciences and Social Policy,” 68.

Two Bits Christopher M. Kelty 21

http://freesoftware.mit.edu/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

that will have looked deliberate and [pg21] answerable in hindsight. Ethnography of
this sort requires a long-term commitment and an ability to see past the obvious sur-
face of rapid transformation to a more obscure and slower temporality of cultural
significance, yet still pose questions and refine debates about the near future.19
Historically speaking, the chapters of part II can be understood as a contribution to
a history of scientific infrastructureor perhaps to an understanding of large-scale,
collective experimentation.20 The Internet and Free Software are each an important
practical transformation that will have effects on the practice of science and a kind
of complex technical practice for which there are few existing models of study.

A methodological note about the peculiarity of my subject is also in order. The Atten- 68

tive Reader will note that there are very few fragments of conventional ethnographic
material (i.e., interviews or notes) transcribed herein. Where they do appear, they
tend to be ”publicly available”which is to say, accessible via the Internetand are
cited as such, with as much detail as necessary to allow the reader to recover them.
Conventional wisdom in both anthropology and history has it that what makes a
study interesting, in part, is the work a researcher has put into gathering that which
is not already available, that is, primary sources as opposed to secondary sources. In
some cases I provide that primary access (specifically in chapters 2, 8, and 9), but in
many others it is now literally impossible: nearly everything is archived. Discussions,
fights, collaborations, talks, papers, software, articles, news stories, history, old
software, old software manuals, reminiscences, notes, and drawingsit is all saved
by someone, somewhere, and, more important, often made instantly available by
those who collect it. The range of conversations and interactions that count as pri-
vate (either in the sense of disappearing from written memory or of being accessible
only to the parties involved) has shrunk demonstrably since about 1981.

Such obsessive archiving means that ethnographic research is stratified in time. 69

Questions that would otherwise have required ”being there” are much easier to
research after the fact, and this is most evident in my reconstruction from sources

19Despite what might sound like a ”shoot first, ask questions later” approach, the design of this
project was in fact conducted according to specific methodologies. The most salient is actor-network
theory: Latour, Science in Action; Law, ”Technology and Heterogeneous Engineering”; Callon, ”Some
Elements of a Sociology of Translation”; Latour, Pandoras Hope; Latour, Re-assembling the Social;
Callon, Laws of the Markets; Law and Hassard, Actor Network Theory and After. Ironically, there have
been no actor-network studies of networks, which is to say, of particular information and
communication technologies such as the Internet. The confusion of the word network (as an
analytical and methodological term) with that of network (as a particular configuration of wires,
waves, software, and chips, or of people, roads, and buses, or of databases, names, and diseases)
means that it is necessary to always distinguish this-network-here from any-network-whatsoever. My
approach shares much with the ontological questions raised in works such as Law, Aircraft Stories;
Mol, The Body Multiple; Cussins, ”Ontological Choreography”; Charis Thompson, Making Parents; and
Dumit, Picturing Personhood.
20I understand a concern with scientific infrastructure to begin with Steve Shapin and Simon Schaffer
in Leviathan and the Air Pump, but the genealogy is no doubt more complex. It includes Shapin, The
Social History of Truth; Biagioli, Galileo, Courtier; Galison, How Experiments End and Image and
Logic; Daston, Biographies of Scientific Objects; Johns, The Nature of the Book. A whole range of
works explore the issue of scientific tools and infrastructure: Kohler, Lords of the Fly; Rheinberger,
Towards a History of Epistemic Things; Landecker, Culturing Life; Keating and Cambrosio, Biomedical
Platforms. Bruno Latours ”What Rules of Method for the New Socio-scientific Experiments” provides
one example of where science studies might go with these questions. Important texts on the subject
of technical infrastructures include Walsh and Bayma, ”Computer Networks and Scientific Work”;
Bowker and Star, Sorting Things Out; Edwards, The [pg316] Closed World; Misa, Brey, and Feenberg,
Modernity and Technology; Star and Ruhleder, ”Steps Towards an Ecology of Infrastructure.”

Two Bits Christopher M. Kelty 22

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

on USENET and mailing lists in chapters 1, 6, and 7. The overwhelming availability
of quasi-archival materials is something I refer to, in a play on the EMACS text editor,
as ”self-documenting history.” That is to say, one of the activities that geeks love to
participate in, and encourage, is the creation, analysis, and archiving of their own
roles in the [pg22] development of the Internet. No matter how obscure or arcane,
it seems most geeks have a well-developed sense of possibilitytheir contribution
could turn out to have been transformative, important, originary. What geeks may
lack in social adroitness, they make up for in archival hubris.

Finally, the theoretical contribution of Two Bits consists of a refinement of debates 70

about publics, public spheres, and social imaginaries that appear troubled in the
context of the Internet and Free Software. Terminology such as virtual community,
online community, cyberspace, network society, or information society are gener-
ally not theoretical constructs, but ways of designating a subgenre of disciplinary
research having to do with electronic networks. The need for a more precise analy-
sis of the kinds of association that take place on and through information technology
is clear; the first step is to make precise which information technologies and which
specific practices make a difference.

There is a relatively large and growing literature on the Internet as a public sphere, 71

but such literature is generally less concerned with refining the concept through re-
search and more concerned with pronouncing whether or not the Internet fits Haber-
mass definition of the bourgeois public sphere, a definition primarily conceived to
account for the eighteenth century in Britain, not the twenty-first-century Internet.21
The facts of technical and human life, as they unfold through the Internet and around
the practices of Free Software, are not easy to cram into Habermass definition. The
goal of Two Bits is not to do so, but to offer conceptual clarity based in ethnographic
fieldwork.

The key texts for understanding the concept of recursive publics are the works of 72

Habermas, Charles Taylors Modern Social Imaginaries, and Michael Warners The
Letters of the Republic and Publics and Counterpublics. Secondary texts that refine
these notions are John Deweys The Public and Its Problems and Hannah Arendts The
Human Condition. Here it is not the public sphere per se that is the center of analysis,
but the ”ideas of modern moral and social order” and the terminology of ”modern
social imaginaries.”22 I find these concepts to be useful as starting points for a
very specific reason: to distinguish the meaning of moral order from the meaning of
moral and technical order that I explore with respect to geeks. I do not seek to test
the concept of social imaginary here, but to build something on top of it. [pg23]

If recursive public is a useful concept, it is because it helps elaborate the general 73

question of the ”reorientation of knowledge and power.” In particular it is meant
to bring into relief the ways in which the Internet and Free Software are related to
the political economy of modern society through the creation not only of new knowl-
edge, but of new infrastructures for circulating, maintaining, and modifying it. Just
as Warners book The Letters of the Republic was concerned with the emergence of
21Dreyfus, On the Internet; Dean, ”Why the Net Is Not a Public Sphere.”
22In addition, see Lippmann, The Phantom Public; Calhoun, Habermas and the Public Sphere; Latour
and Weibel, Making Things Public. The debate about social imaginaries begins alternately with
Benedict Andersons Imagined Communities or with Cornelius Castoriadiss The Imaginary Institution
of Society; see also Chatterjee, ”A Response to Taylors Modes of Civil Society”; Gaonkar, ”Toward
New Imaginaries”; Charles Taylor, ”Modes of Civil Society” and Sources of the Self.

Two Bits Christopher M. Kelty 23

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

the discourse of republicanism and the simultaneous development of an American
republic of letters, or as Habermass analysis was concerned with the relationship
of the bourgeois public sphere to the democratic revolutions of the eighteenth cen-
tury, this book asks a similar series of questions: how are the emergent practices
of recursive publics related to emerging relations of political and technical life in a
world that submits to the Internet and its forms of circulation? Is there still a role
for a republic of letters, much less a species of public that can seriously claim in-
dependence and autonomy from other constituted forms of power? Are Habermass
pessimistic critiques of the bankruptcy of the public sphere in the twentieth century
equally applicable to the structures of the twenty-first century? Or is it possible that
recursive publics represent a reemergence of strong, authentic publics in a world
shot through with cynicism and suspicion about mass media, verifiable knowledge,
and enlightenment rationality? [PAGE 24: BLANK]

Two Bits Christopher M. Kelty 24

https://twobits.net
https://kelty.org/

Part I the internet 74

The concept of the state, like most concepts which are introduced by ”The,” 75

is both too rigid and too tied up with controversies to be of ready use. It is a
concept which can be approached by a flank movement more easily than by a
frontal attack. Themoment we utter the words ”The State” a score of intellectual
ghosts rise to obscure our vision. Without our intention and without our notice,
the notion of ”The State” draws us imperceptibly into a consideration of the
logical relationship of various ideas to one another, and away from the facts of
human activity. It is better, if possible, to start from the latter and see if we are
not led thereby into an idea of something which will turn out to implicate the
marks and signs which characterize political behavior.

- john dewey, The Public and Its Problems 76

Two Bits Christopher M. Kelty 25

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

1.Geeks and Recursive Publics 77

Since about 1997, I have been living with geeks online and off. I have been drawn 78

from Boston to Bangalore to Berlin to Houston to Palo Alto, from conferences and
workshops to launch parties, pubs, and Internet Relay Chats (IRCs). All along the way
in my research questions of commitment and practice, of ideology and imagination
have arisen, even as the exact nature of the connections between these people and
ideas remained obscure to me: what binds geeks together? As my fieldwork pulled
me from a Boston start-up company that worked with radiological images to media
labs in Berlin to young entrepreneurial elites in Bangalore, my logistical question
eventually developed into an analytical concept: geeks are bound together as a
recursive public.

How did I come to understand geeks as a public constituted around the technical 79

and moral ideas of order that allow them to associate with one another? Through
this question, one can start to understand the larger narrative of Two Bits: that of
Free Software [pg28] as an exemplary instance of a recursive public and as a set of
practices that allow such publics to expand and spread. In this chapter I describe,
ethnographically, the diverse, dispersed, and as an exemplary instance of a recur-
sive public and as a set of practices that allow such publics to expand and spread. In
this chapter I describe, ethnographically, the diverse, dispersed, and novel forms of
entanglements that bind geeks together, and I construct the concept of a recursive
public in order to explain these entanglements.

A recursive public is a public that is constituted by a shared concern for maintaining 80

the means of association through which they come together as a public. Geeks
find affinity with one another because they share an abiding moral imagination of
the technical infrastructure, the Internet, that has allowed them to develop and
maintain this affinity in the first place. I elaborate the concept of recursive public
(which is not a term used by geeks) in relation to theories of ideology, publics, and
public spheres and social imaginaries. I illustrate the concept through ethnographic
stories and examples that highlight geeks imaginations of the technical and moral
order of the Internet. These stories include those of the fate of Amicas, a Boston-
based healthcare start-up, between 1997 and 2003, of my participation with new
media academics and activists in Berlin in 1999-2001, and of the activities of a
group of largely Bangalore-based information technology (IT) professionals on and
offline, especially concerning the events surrounding the peer-topeer file sharing
application Napster in 2000-2001.

The phrase ”moral and technical order” signals both technologyprincipally software, 81

hardware, networks, and protocolsand an imagination of the proper order of collec-
tive political and commercial action, that is, how economy and society should be
ordered collectively. Recursive publics are just as concerned with the moral order of
markets as they are with that of commons; they are not anticommercial or antigov-
ernment. They exist independent of, and as a check on, constituted forms of power,
which include markets and corporations. Unlike other concepts of a public or of a
public sphere, ”recursive public” captures the fact that geeks principal mode of as-
sociating and acting is through the medium of the Internet, and it is through this
medium that a recursive public can come into being in the first place. The Internet
is not itself a public sphere, a public, or a recursive public, but a complex, het-
erogeneous infrastructure that constitutes and constrains geeks everyday practical

Two Bits Christopher M. Kelty 26

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

commitments, their ability to ”become public” or to compose a common world. As
such, their participation qua recursive publics structures their identity as creative
and autonomous [pg29] individuals. The fact that the geeks described here have been
brought together by mailing lists and e-mail, bulletin-board services and Web sites,
books and modems, air travel and academia, and cross-talking and cross-posting in
ways that were not possible before the Internet is at the core of their own reasoning
about why they associate with each other. They are the builders and imaginers of
this space, and the space is what allows them to build and imagine it.

Why recursive? I call such publics recursive for two reasons: first, in order to signal 82

that this kind of public includes the activities of making, maintaining, and modifying
software and networks, as well as the more conventional discourse that is thereby
enabled; and second, in order to suggest the recursive ”depth” of the public, the
series of technical and legal layersfrom applications to protocols to the physical in-
frastructures of waves and wiresthat are the subject of this making, maintaining,
and modifying. The first of these characteristics is evident in the fact that geeks
use technology as a kind of argument, for a specific kind of order: they argue about
technology, but they also argue through it. They express ideas, but they also ex-
press infrastructures through which ideas can be expressed (and circulated) in new
ways. The second of these characteristicsregarding layersis reflected in the ability of
geeks to immediately see connections between, for example, Napster (a user appli-
cation) and TCP/IP (a network protocol) and to draw out implications for both of them.
By connecting these layers, Napster comes to represent the Internet in miniature.
The question of where these layers stop (hardware? laws and regulations? physical
constants? etc.) circumscribes the limits of the imagination of technical and moral
order shared by geeks.

Above all, ”recursive public” is a conceptnot a thing. It is intended to make distinc- 83

tions, allow comparison, highlight salient features, and relate two diverse kinds of
things (the Internet and Free Software) in a particular historical context of chang-
ing relations of power and knowledge. The stories in this chapter (and throughout
the book) give some sense of how geeks interact and what they do technically and
legally, but the concept of a recursive public provides a way of explaining why geeks
(or people involved in Free Software or its derivatives) associate with one another,
as well as a way of testing whether other similar cases of contemporary, technolog-
ically mediated affinity are similarly structured. [pg30]

Recursion 84

Recursion (or ”recursive”) is a mathematical concept, one which is a standard 85

feature of any education in computer programming. The definition from the
Oxford English Dictionary reads: ”2. a. Involving or being a repeated procedure
such that the required result at each step except the last is given in terms of
the result(s) of the next step, until after a finite number of steps a terminus is
reached with an outright evaluation of the result.” It should be distinguished
from simple iteration or repetition. Recursion is always subject to a limit and is
more like a process of repeated deferral, until the last step in the process, at
which point all the deferred steps are calculated and the result given.

Recursion is powerful in programming because it allows for the definition of pro- 86

cedures in terms of themselvessomething that seems at first counterintuitive.
So, for example,

Two Bits Christopher M. Kelty 27

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

; 87

otherwise return n times factorial of n-1;
(defun (factorial n) ; This is the name of the function and its input n.
(if (=n 1) ; This is the final limit, or recursive depth
1 ; if n=1, then return 1
(* n (factorial (- n 1)))))
;
call the procedure from within itself, and
;
calculate the next step of the result before
;
giving an answer.1

In Two Bits a recursive public is one whose existence (which consists solely in 88

address through discourse) is only possible through discursive and technical
reference to the means of creating this public. Recursiveness is always
contingent on a limit which determines the depth of a recursive procedure. So,
for instance, a Free Software project may depend on some other kind of
software or operating system, which may in turn depend on particular open
protocols or a particular process, which in turn depend on certain kinds of
hardware that implement them. The ”depth” of recursion is determined by the
openness necessary for the project itself.
James Boyle has also noted the recursive nature, in particular, of Free Software: 89

”Whats more, and this is a truly fascinating twist, when the production process
does need more centralized coordination, some governance that guides how
the sticky modular bits are put together, it is at least theoretically possible that
we can come up with the control system in exactly the same way. In this sense,
distributed production is potentially recursive.”2
1. Abelson and Sussman, The Structure and Interpretation of Computer 90

Programs, 30.
2. Boyle, ”The Second Enclosure Movement and the Construction of the Public 91

Domain,” 46. [pg31]

From the Facts of Human Activity 92

Boston, May 2003. Starbucks. Sean and Adrian are on their way to pick me up for 93

dinner. Ive already had too much coffee, so I sit at the window reading the paper.
Eventually Adrian calls to find out where I am, I tell him, and he promises to show
up in fifteen minutes. I get bored and go outside to wait, watch the traffic go by.
More or less right on time (only post-dotcom is Adrian ever on time), Seans new
blue VW Beetle rolls into view. Adrian jumps out of the passenger seat and into the
back, and I get in. Sean has been driving for a little over a year. He seems
confident, cautious, but meanders through the streets of Cambridge. We are
destined for Winchester, a township on the Charles River, in order to go to an
Indian restaurant that one of Seans friends has recommended. When I ask how
they are doing, they say, ”Good, good.” Adrian offers, ”Well, Seans better than he
has been in two years.” ”Really?” I say, impressed.
Sean says, ”Well, happier than at least the last year. I, well, let me put it this way: 94

Two Bits Christopher M. Kelty 28

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

forgive me father for I have sinned, I still have unclean thoughts about some of the
upper management in the company, I occasionally think they are not doing things
in the best interest of the company, and I see them as self-serving and sometimes
wish them ill.” In this rolling blue confessional Sean describes some of the people
who I am familiar with whom he now tries very hard not to think about. I look at
him and say, ”Ten Hail Marys and ten Our Fathers, and you will be absolved, my
child.” Turning to Adrian, I ask, ”And what about you?” Adrian continues the joke:
”I, too, have sinned. I have reached the point where I can see absolutely nothing
good coming of this company but that I can keep my investments in it long enough
to pay for my childrens college tuition.” I say, ”You, my son, I cannot help.” Sean
says, ”Well, funny thing about tainted money . . . there just taint enough of
it.”
I am awestruck. When I met Sean and Adrian, in 1997, their start-up company, 95

Amicas, was full of spit, with five employees working out of Adrians living room
and big plans to revolutionize the medical-imaging world. They had connived to
get Massachusetts General Hospital to install their rudimentary system and let it
compete with the big corporate sloths that normally stalked back offices: General
Electric, Agfa, Siemens. It was these behemoths, according to Sean and Adrian,
that were bilking hospitals [pg32] and healthcare providers with promises of cure-all
technologies and horribly designed ”silos,” ”legacy systems,” and other
closed-system monsters of corporate IT harkening back to the days of IBM
mainframes. These beasts obviously did not belong to the gleaming future of
Internet-enabled scalability. By June of 2000, Amicas had hired new ”professional”
management, moved to Watertown, and grown to about a hundred employees.
They had achieved their goal of creating an alternative Picture Archiving and
Communication System (PACS) for use in hospital radiology departments and
based on Internet standards.
At that point, in the spring of 2000, Sean could still cheerfully introduce me to his 96

new bossthe same man he would come to hate, inasmuch as Sean hates anyone.
But by 2002 he was frustrated by the extraordinary variety of corner-cutting and,
more particularly, by the complacency with which management ignored his
recommendations and released software that was almost certainly going to fail
later, if not sooner. Sean, who is sort of permanently callow about things corporate,
could find no other explanation than that the new management was evil.
But by 2003 the company had succeeded, having grown to more than 200 97

employees and established steady revenue and a stable presence throughout the
healthcare world. Both Sean and Adrian were made richnot wildly rich, but rich
enoughby its success. In the process, however, it also morphed into exactly what
Sean and Adrian had created it in order to fight: a slothlike corporate purveyor of
promises and broken software. Promises Adrian had made and software Sean had
built. The failure of Amicas to transform healthcare was a failure too complex and
technical for most of America to understand, but it rested atop the success of
Amicas in terms more readily comprehensible: a growing company making profit.
Adrian and Sean had started the company not to make money, but in order to fix a
broken healthcare system; yet the system stayed broken while they made
money.
In the rolling confessional, Sean and Adrian did in fact see me, however jokingly, 98

as a kind of redeemer, a priest (albeit of an order with no flock) whose judgment of

Two Bits Christopher M. Kelty 29

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

the affairs past was essential to their narration of their venture as a success, a
failure, or as an unsatisfying and complicated mixture of both. I thought about this
strange moment of confession, of the combination of recognition and denial, of
Adrians new objectification of the company as an [pg33] investment opportunity, and
of Seans continuing struggle to make his life and his work harmonize in order to
produce good in the world. Only the promise of the next project, the next mission
(and the ostensible reason for our dinner meeting) could possibly have mitigated
the emotional disaster that their enterprise might otherwise be. Seans and Adrians
endless, arcane fervor for the promise of new technologies did not cease, even
given the quotidian calamities these technologies leave in their wake. Their faith
was strong, and continuously tested.
Adrians and Seans passion was not for moneythough money was a powerful drugit 99

was for the Internet: for the ways in which the Internet could replace the existing
infrastructure of hospitals and healthcare providers, deliver on old promises of
telemedicine and teleradiology, and, above all, level a playing field systematically
distorted and angled by corporate and government institutions that sought
secrecy and private control, and stymied progress. In healthcare, as Adrian
repeatedly explained to me, this skewed playing field was not only unfair but
malicious and irresponsible. It was costing lives. It slowed the creation and
deployment of technologies and solutions that could lower costs and thus provide
more healthcare for more people. The Internet was not part of the problem; it was
part of the solution to the problems that ailed 1990s healthcare.
At the end of our car trip, at the Indian restaurant in Winchester, I learned about 100

their next scheme, a project called MedCommons, which would build on the ideals
of Free Software and give individuals a way to securely control and manage their
own healthcare data. The rhetoric of commons and the promise of the Internet as
an infrastructure dominated our conversation, but the realities of funding and the
question of whether MedCommons could be pursued without starting another
company remained unsettled. I tried to imagine what form a future confession
might take.

Geeks and Their Internets 101

Sean and Adrian are geeks. They are entrepreneurs and idealists in different ways, 102

a sometimes paradoxical combination. They are certainly [pg34] obsessed with
technology, but especially with the Internet, and they clearly distinguish
themselves from others who are obsessed with technology of just any sort. They
arent quite representativethey do not stand in for all geeksbut the way they think
about the Internet and its possibilities might be. Among the rich story of their
successes and failures, one might glimpse the outlines of a question: where do
their sympathies lie? Who are they with? Who do they recognize as being like
them? What might draw them together with other geeks if not a corporation, a
nation, a language, or a cause? What binds these two geeks to any others?
Sean worked for the Federal Reserve in the 1980s, where he was introduced to 103

UNIX, C programming, EMACS, Usenet, Free Software, and the Free Software
Foundation. But he was not a Free Software hacker; indeed, he resisted my
attempts to call him a hacker at all. Nevertheless, he started a series of projects
and companies with Adrian that drew on the repertoire of practices and ideas

Two Bits Christopher M. Kelty 30

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

familiar from Free Software, including their MedCommons project, which was
based more or less explicitly in the ideals of Free Software. Adrian has a degree in
medicine and in engineering, and is a serial entrepreneur, with Amicas being his
biggest successand throughout the last ten years has attended all manner of
conferences and meetings devoted to Free Software, Open Source, open
standards, and so on, almost always as the lone representative from healthcare.
Both graduated from the MIT (Sean in economics, Adrian in engineering), one of
the more heated cauldrons of the Internet and the storied home of hackerdom, but
neither were MIT hackers, nor even computer-science majors.
Their goals in creating a start-up rested on their understanding of the Internet as 104

an infrastructure: as a standardized infrastructure with certain extremely powerful
properties, not the least of which was its flexibility. Sean and Adrian talked
endlessly about open systems, open standards, and the need for the Internet to
remain open and standardized. Adrian spoke in general terms about how it would
revolutionize healthcare; Sean spoke in specific terms about how it structured the
way Amicass software was being designed and written. Both participated in
standards committees and in the online and offline discussions that are
tantamount to policymaking in the Internet world. The company they created was
a ”virtual” company, that is, built on tools that depended on the Internet and
allowed employees to manage and work from a variety of locations, though not
without frustration, of course: Sean waited years for broadband access in his
home, and the hospitals they served [pg35] hemmed themselves in with virtual
private networks, intranets, and security firewalls that betrayed the promises of
openness that Sean and Adrian heralded.
The Internet was not the object of their work and lives, but it did represent in detail 105

a kind of moral or social order embodied in a technical system and available to
everyone to use as a platform whereby they might compete to improve and
innovate in any realm. To be sure, although not all Internet entrepreneurs of the
1990s saw the Internet in the same way, Sean and Adrian were hardly alone in
their vision. Something about the particular way in which they understood the
Internet as representing a moral ordersimultaneously a network, a market, a
public, and a technologywas shared by a large group of people, those who I now
refer to simply as geeks.
The term geek is meant to be inclusive and to index the problematic of a recursive 106

public. Other terms may be equally useful, but perhaps semantically
overdetermined, most notably hacker, which regardless of its definitional range,
tends to connote someone subversive and/or criminal and to exclude
geek-sympathetic entrepreneurs and lawyers and activists.23 Geek is meant to
signal, like the public in ”recursive public,” that geeks stand outside power, at
least in some aspects, and that they are not capitalists or technocrats, even if they

23For the canonical story, see Levy, Hackers. Hack referred to (and still does) a clever use of
technology, usually unintended by the maker, to achieve some task in an elegant manner. The term
has been successfully redefined by the mass media to refer to computer users who break into and
commit criminal acts on corporate or government or personal computers connected to a network.
Many self-identified hackers insist that the criminal element be referred to as crackers (see, in
particular, the entries on ”Hackers,” ”Geeks” and ”Crackers” in The Jargon File,
⌜ http://www.catb.org/ esr/jargon/ ⌟ , also published as Raymond, The New Hackers Dictionary). On the
subject of definitions and the cultural and ethical characteristics of hackers, see Coleman, ”The
Social Construction of Freedom,” chap. 2.

Two Bits Christopher M. Kelty 31

http://www.catb.org/~esr/jargon/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

start businesses or work in government or industry.24 Geek is meant to signal a
mode of thinking and working, not an identity; it is a mode or quality that allows
people to find each other, for reasons other than the fact that they share an office,
a degree, a language, or a nation.
Until the mid-1990s, hacker, geek, and computer nerd designated a very specific 107

type: programmers and lurkers on relatively underground networks, usually
college students, computer scientists, and ”amateurs” or ”hobbyists.” A classic
mock self-diagnostic called the Geek Code, by Robert Hayden, accurately and
humorously detailed the various ways in which one could be a geek in 1996UNIX/
Linux skills, love/hate of Star Trek, particular eating and clothing habitsbut as
Hayden himself points out, the geeks of the early 1990s exist no longer. The elite
subcultural, relatively homogenous group it once was has been overrun: ”The
Internet of 1996 was still a wild untamed virgin paradise of geeks and eggheads
unpopulated by script kiddies, and the denizens of AOL. When things changed, I
seriously lost my way. I mean, all the geek that was the Internet [pg36] was gone
and replaced by Xfiles buzzwords and politicians passing laws about a technology
they refused to comprehend.”25

For the purists like Hayden, geeks were there first, and they understood 108

something, lived in a way, that simply cannot be comprehended by ”script kiddies”
(i.e., teenagers who perform the hacking equivalent of spray painting or cow
tipping), crackers, or AOL users, all of whom are despised by Hayden-style geeks
as unskilled users who parade around the Internet as if they own it. While certainly
elitist, Hayden captures the distinction between those who are legitimately
allowed to call themselves geeks (or hackers) and those who arent, a distinction
that is often formulated recursively, of course: ”You are a hacker when another
hacker calls you a hacker.”
However, since the explosive growth of the Internet, geek has become more 109

common a designation, and my use of the term thus suggests a role that is larger
than programmer/hacker, but not as large as ”all Internet users.” Despite Haydens
frustration, geeks are still bound together as an elite and can be easily
distinguished from ”AOL users.” Some of the people I discuss would not call
themselves geeks, and some would. Not all are engineers or programmers: I have
met businessmen, lawyers, activists, bloggers, gastroenterologists,
anthropologists, lesbians, schizophrenics, scientists, poets, people suffering from
malaria, sea captains, drug dealers, and people who keep lemurs, many of whom
refer to themselves as geeks, some of the time.26 There are also lawyers,

24One example of the usage of geek is in Star, The Cultures of Computing. Various denunciations
(e.g., Barbrook and Cameron, ”The California Ideology”; Borsook, Technolibertarianism) tend to focus
on journalistic accounts of an ideology that has little to do with what hackers, geeks, and
entrepreneurs actually make. A more relevant categorical distinction than that between hackers and
geeks is that between geeks and technocrats; in the case of technocrats, the ”anthropology of
technocracy” is proposed as the study of the limits of technical rationality, in particular the forms
through which ”planning” creates ”gaps in the form that serve as targets of intervention” (Riles,
”Real Time,” 393). Riless ”technocrats” are certainly not the ”geeks” I portray here (or at least, if
they are, it is only in their frustrating day jobs). Geeks do have libertarian, specifically Hayekian or
Feyerabendian leanings, but are more likely to see technical failures not as failures of planning, but
as bugs, inefficiencies, or occasionally as the products of human hubris or stupidity that is born of a
faith in planning.
25See The Geek Code, ⌜ http://www.geekcode.com/ ⌟ .
26Geeks are also identified often by the playfulness and agility with which they manipulate these

Two Bits Christopher M. Kelty 32

http://www.geekcode.com/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

politicians, sociologists, and economists who may not refer to themselves as geeks,
but who care about the Internet just as other geeks do. By contrast ”users” of the
Internet, even those who use it eighteen out of twenty-four hours in a day to ship
goods and play games, are not necessarily geeks by this characterization.

Operating Systems and Social Systems 110

Berlin, November 1999. I am in a very hip club in Mitte called WMF. Its about eight 111

oclockfive hours too early for me to be a hipster, but the context is extremely cool.
WMF is in a hard-to-find, abandoned building in the former East; it is partially
converted, filled with a mixture of new and old furnishings, video projectors,
speakers, makeshift bars, and dance-floor lighting. A crowd of around fifty people
lingers amid smoke and Becks beer bottles, [pg37] sitting on stools and chairs and
sofas and the floor. We are listening to an academic read a paper about Claude
Shannon, the MIT engineer credited with the creation of information theory. The
author is smoking and reading in German while the audience politely listens. He
speaks for about seventy minutes. There are questions and some perfunctory
discussion. As the crowd breaks up, I find myself, in halting German that quickly
converts to English, having a series of animated conversations about the GNU
General Public License, the Debian Linux Distribution, open standards in net radio,
and a variety of things for which Claude Shannon is the perfect ghostly
technopaterfamilias, even if his seventy-minute invocation has clashed heavily
with the surroundings.
Despite my lame German, I still manage to jump deeply into issues that seem 112

extremely familiar: Internet standards and open systems and licensing issues and
namespaces and patent law and so on. These are not businesspeople, this is not a
start-up company. As I would eventually learn, there was even a certain disdain for
die Krawattenfaktor, the suit-and-tie factor, at these occasional, hybrid events
hosted by Mikro e.V., a nonprofit collective of journalists, academics, activists,
artists, and others interested in new media, the Internet, and related issues.
Mikros constituency included people from Germany, Holland, Austria, and points
eastward. They took some pride in describing Berlin as ”the farthest East the West
gets” and arranged for a group photo in which, facing West, they stood behind the
statue of Marx and Lenin, who face East and look eternally at the iconic East
German radio tower (Funkturm) in Alexanderplatz. Mikros members are resolutely
activist and see the issues around the Internet-as-infrastructure not in terms of its
potential for business opportunities, but in urgently political and unrepentantly
aesthetic termsterms that are nonetheless similar to those of Sean and Adrian,
from whom I learned the language that allows me to mingle with the Mikro crowd
at WMF. I am now a geek.
Before long, I am talking with Volker Grassmuck, founding member of Mikro and 113

organizer of the successful ”Wizards of OS” conference, held earlier in the year,
which had the very intriguing subtitle ”Operating Systems and Social Systems.”
Grassmuck is inviting me to participate in a planning session for the next WOS,
held at the Chaos Computer Congress, a hacker gathering that occurs each year in
December in Berlin. In the following months I will meet a huge number of people
who seem, uncharacteristically for artists [pg38] and activists, strangely obsessed

labels and characterizations. See Michael M. J. Fischer, ”Worlding Cyberspace” for an example.

Two Bits Christopher M. Kelty 33

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

with configuring their Linux distributions or hacking the http protocol or attending
German Parliament hearings on copyright reform. The political lives of these folks
have indeed mixed up operating systems and social systems in ways that are
more than metaphorical.

The Idea of Order at the Keyboard 114

If intuition can lead one from geek to geek, from start-up to nightclub, and across 115

countries, languages, and professional orientations, it can only be due to a shared
set of ideas of how things fit together in the world. These ideas might be ”cultural”
in the traditional sense of finding expression among a community of people who
share backgrounds, homes, nations, languages, idioms, ethnos, norms, or other
designators of belonging and co-presence. But because the Internetlike
colonialism, satellite broadcasting, and air travel, among other thingscrosses all
these lines with abandon that the shared idea of order is better understood as part
of a public, or public sphere, a vast republic of letters and media and ideas
circulating in and through our thoughts and papers and letters and conversations,
at a planetary scope and scale.
”Public sphere” is an odd kind of thing, however. It is at once a conceptintended to 116

make sense of a space that is not the here and now, but one made up of writings,
ideas, and discussionsand a set of ideas that people have about themselves and
their own participation in such a space. I must be able to imagine myself speaking
and being spoken to in such a space and to imagine a great number of other
people also doing so according to unwritten rules we share. I dont need a
complete theory, and I dont need to call it a public sphere, but I must somehow
share an idea of order with all those other people who also imagine themselves
participating in and subjecting themselves to that order. In fact, if the public
sphere exists as more than just a theory, then it has no other basis than just such a
shared imagination of order, an imagination which provides a guide against which
to make judgments and a map for changing or achieving that order. Without such
a shared imagination, a public sphere is otherwise nothing more than a cacophony
of voices and information, nothing more than a stream of data, structured and
formatted by and for machines, whether paper or electronic. [pg39]

Charles Taylor, building on the work of Jürgen Habermas and Michael Warner, 117

suggests that the public sphere (both idea and thing) that emerged in the
eighteenth century was created through practices of communication and
association that reflected a moral order in which the public stands outside power
and guides or checks its operation through shared discourse and enlightened
discussion. Contrary to the experience of bodies coming together into a common
space (Taylor calls them ”topical spaces,” such as conversation, ritual, assembly),
the crucial component is that the public sphere ”transcends such topical spaces.
We might say that it knits a plurality of spaces into one larger space of
non-assembly. The same public discussion is deemed to pass through our debate
today, and someone elses earnest conversation tomorrow, and the newspaper
interview Thursday and so on. . . . The public sphere that emerges in the
eighteenth century is a meta-topical common space.”27

27Taylor, Modern Social Imaginaries, 86.

Two Bits Christopher M. Kelty 34

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Because of this, Taylor refers to his version of a public as a ”social imaginary,” a 118

way of capturing a phenomena that wavers between having concrete existence
”out there” and imagined rational existence ”in here.” There are a handful of other
such imagined spacesthe economy, the self-governing people, civil societyand in
Taylors philosophical history they are related to each through the ”ideas of moral
and social order” that have developed in the West and around the world.28

Taylors social imaginary is intended to do something specific: to resist the ”spectre 119

of idealism,” the distinction between ideas and practices, between ”ideologies”
and the so-called material world as ”rival causal agents.” Taylor suggests,
”Because human practices are the kind of thing that makes sense, certain ideas
are internal to them; one cannot distinguish the two in order to ask the question
Which causes which?”29 Even if materialist explanations of cause are satisfying, as
they often are, Taylor suggests that they are so ”at the cost of being implausible as
a universal principle,” and he offers instead an analysis of the rise of the modern
imaginaries of moral order.30

The concept of recursive public, like that of Taylors public sphere, is understood 120

here as a kind of social imaginary. The primary reason is to bypass the dichotomy
between ideas and material practice. Because the creation of software, networks,
and legal documents are precisely the kinds of activities that trouble this
distinctionthey are at once ideas and things that have material effects in the [pg40]

world, both expressive and performativeit is extremely difficult to identify the
properly material materiality (source code? computer chips? semiconductor
manufacturing plants?). This is the first of the reasons why a recursive public is to
be distinguished from the classic formulae of the public sphere, that is, that it
requires a kind of imagination that includes the writing and publishing and
speaking and arguing we are familiar with, as well as the making of new kinds of
software infrastructures for the circulation, archiving, movement, and modifiability
of our enunciations.
The concept of a social imaginary also avoids the conundrums created by the 121

concept of ”ideology” and its distinction from material practice. Ideology in its
technical usage has been slowly and surely overwhelmed by its pejorative
meaning: ”The ideological is never ones own position; it is always the stance of
someone else, always their ideology.”31 If one were to attempt an explanation of
any particular ideology in nonpejorative terms, there is seemingly nothing that
might rescue the explanation from itself becoming ideological.
The problem is an old one. Clifford Geertz noted it in ”Ideology as a Cultural 122

System,” as did Karl Mannheim before him in Ideology and Utopia: it is the
difficulty of employing a non-evaluative concept of ideology.32 Of all the versions
28On the subject of imagined communities and the role of information technologies in imagined
networks, see Green, Harvey, and Knox, ”Scales of Place and Networks”; and Flichy, The Internet
Imaginaire.
29Taylor, Modern Social Imaginaries, 32.
30Ibid., 33-48. Taylors history of the transition from feudal nobility to civil society to the rise of
republican democracies (however incomplete) is comparable to Foucaults history of the birth of
biopolitics, in La naissance de la biopolitique, as an attempt to historicize governance with respect to
its theories and systems, as well as within the material forms it takes.
31Ricoeur, Lectures on Ideology and Utopia, 2.
32Geertz, ”Ideology as a Cultural System”; Mannheim, Ideology and Utopia. Both, of course, also
signal the origin of the scientific use of the term proximately with Karl Marxs ”German Ideology” and

Two Bits Christopher M. Kelty 35

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

of struggle over the concept of a scientific or objective sociology, it is the claim of
exploring ideology objectively that most rankles. As Geertz put it, ”Men do not
care to have beliefs to which they attach great moral significance examined
dispassionately, no matter for how pure a purpose; and if they are themselves
highly ideologized, they may find it simply impossible to believe that a
disinterested approach to critical matters of social and political conviction can be
other than a scholastic sham.”33

Mannheim offered one response: a version of epistemological relativism in which 123

the analysis of ideology included the ideological position of the analyst. Geertz
offered another: a science of ”symbolic action” based in Kenneth Burkes work and
drawing on a host of philosophers and literary critics.34 Neither the concept of
ideology, nor the methods of cultural anthropology have been the same since.
”Ideology” has become one of the most widely deployed (some might say, most
diffuse) tools of critique, where critique is understood as the analysis of cultural
patterns given in language and symbolic structures, for the purposes of bringing
[pg41] to light systems of hegemony, domination, authority, resistance, and/or
misrecognition.35 However, the practices of critique are just as (if not more) likely
to be turned on critical scholars themselves, to show how the processes of
analysis, hidden assumptions, latent functions of the university, or other
unrecognized features the material, non-ideological real world cause the analyst to
fall into an ideological trap.
The concept of ideology takes a turn toward ”social imaginary” in Paul Ricoeurs 124

Lectures on Ideology and Utopia, where he proposes ideological and utopian
thought as two components of ”social and cultural imagination.” Ricoeurs
overview divides approaches to the concept of ideology into three basic typesthe
distorting, the integrating, and the legitimatingaccording to how actors deal with
reality through (symbolic) imagination. Does the imagination distort reality,
integrate it, or legitimate it vis-à-vis the state? Ricoeur defends the second,
Geertzian flavor: ideologies integrate the symbolic structure of the world into a
meaningful whole, and ”only because the structure of social life is already
symbolic can it be distorted.”36

For Ricoeur, the very substance of life begins in the interpretation of reality, and 125

therefore ideologies (as well as utopiasand perhaps conspiracies) could well be
treated as systems that integrate those interpretations into the meaningful wholes
of political life. Ricoeurs analysis of the integration of reality though social

more distantly in the Enlightenment writings of Destutt de Tracy.
33Geertz, ”Ideology as a Cultural System,” 195.
34Ibid., 208-13.
35The depth and the extent of this issue is obviously huge. Ricoeurs Lectures on Ideology and
Utopia is an excellent analysis to the problem of ideology prior to 1975. Terry Eagletons books The
Ideology of the Aesthetic and Ideology: An Introduction are Marxist explorations that include
discussions of hegemony and resistance in the context of artistic and literary theory in the 1980s.
Slavoj iek creates a Lacanian-inspired algebraic system of analysis that combines Marxism and
psychoanalysis in novel ways (see iek, Mapping Ideology). There is even an attempt to replace the
concept of ideology with a metaphor of ”software” and ”memes” (see Balkin, Cultural Software). The
core of the issue of ideology as a practice (and the vicissitudes of materialism that trouble it) are
also at the heart of works by Pierre Bourdieu and his followers (on the relationship of ideology and
hegemony, see Laclau and Mouffe, Hegemony and Socialist Strategy). In anthropology, see
Comaroff and Comaroff, Ethnography and the Historical Imagination.
36Ricoeur, Lectures on Ideology and Utopia, 10.

Two Bits Christopher M. Kelty 36

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

imagination, however, does not explicitly address how imagination functions: what
exactly is the nature of this symbolic action or interpretation, or imagination? Can
one know it from the outside, and does it resist the distinction between ideology
and material practice? Both Ricoeur and Geertz harbor hope that ideology can be
made scientific, that the integration of reality through symbolic action requires
only the development of concepts adequate to the job.
Re-enter Charles Taylor. In Modern Social Imaginaries the concept of social 126

imaginary is distinctive in that it attempts to capture the specific integrative
imaginations of modern moral and social order. Taylor stresses that they are
imaginationsnot necessarily theoriesof modern moral and social order: ”By social
imaginary, I mean something much broader and deeper than the intellectual
schemes people may entertain when they think about social reality in a
disengaged mode. I am thinking, rather, of the ways in [pg42] which people imagine
their social existence, how they fit together with others, how things go on between
them and their fellows, the expectations that are normally met, and the deeper
normative notions and images that underlie these expectations.”37 Social
imaginaries develop historically and result in both new institutions and new
subjectivities; the concepts of public, market, and civil society (among others) are
located in the imaginative faculties of actors who recognize the shared, common
existence of these ideas, even if they differ on the details, and the practices of
those actors reflect a commitment to working out these shared concepts.
Social imaginaries are an extension of ”background” in the philosophical sense: ”a 127

wider grasp of our whole predicament.”38 The example Taylor uses is that of
marching in a demonstration: the action is in our imaginative repertory and has a
meaning that cannot be reduced to the local context: ”We know how to assemble,
pick up banners and march. . . . [W]e understand the ritual. . . . [T]he immediate
sense of what we are doing, getting the message to our government and our
fellow citizens that the cuts must stop, say, makes sense in a wider context, in
which we see ourselves standing in a continuing relation with others, in which it is
appropriate to address them in this manner.”39 But we also stand ”internationally”
and ”in history” against a background of stories, images, legends, symbols, and
theories. ”The background that makes sense of any given act is wide and deep. It
doesnt include everything in our world, but the relevant sense-giving features cant
be circumscribed. . . . [It] draws on our whole world, that is, our sense of our
whole predicament in time and space, among others and in history.”40

The social imaginary is not simply the norms that structure our actions; it is also a 128

sense of what makes norms achievable or ”realizable,” as Taylor says. This is the
idea of a ”moral order,” one that we expect to exist, and if it doesnt, one that
provides a plan for achieving it. For Taylor, there is such a thing as a ”modern idea
of order,” which includes, among other things, ideas of what it means to be an
individual, ideas of how individual passions and desires are related to collective
association, and, most important, ideas about living in time together (he stresses a
radically secular conception of timesecular in a sense that means more than simply
”outside religion”). He by no means insists that this is the only such definition of

37Taylor, Modern Social Imaginaries, 23.
38Ibid., 25.
39Ibid., 26-27.
40Ibid., 28.

Two Bits Christopher M. Kelty 37

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

modernity (the door is wide open to understanding alternative modernities), but
that the modern idea of moral order is [pg43] one that dominates and structures a
very wide array of institutions and individuals around the world.
The ”modern idea of moral order” is a good place to return to the question of 129

geeks and their recursive publics. Are the ideas of order shared by geeks different
from those Taylor outlines? Do geeks like Sean and Adrian, or activists in Berlin,
possess a distinctive social imaginary? Or do they (despite their planetary
dispersal) participate in this common modern idea of moral order? Do the stories
and narratives, the tools and technologies, the theories and imaginations they
follow and build on have something distinctive about them? Seans and Adrians
commitment to transforming healthcare seems to be, for instance, motivated by a
notion of moral order in which the means of allocation of healthcare might become
more just, but it is also shot through with technical ideas about the role of
standards, the Internet, and the problems with current technical solutions; so while
they may seem to be simply advocating for better healthcare, they do so through
a technical language and practice that are probably quite alien to policymakers,
upper management, and healthcare advocacy groups that might otherwise be in
complete sympathy.
The affinity of geeks for each other is processed through and by ideas of order that 130

are both moral and technicalideas of order that do indeed mix up ”operating
systems and social systems.” These systems include the technical means (the
infrastructure) through which geeks meet, assemble, collaborate, and plan, as well
as how they talk and think about those activities. The infrastructurethe
Internetallows for a remarkably wide and diverse array of people to encounter and
engage with each other. That is to say, the idea of order shared by geeks is shared
because they are geeks, because they ”get it,” because the Internets structure and
software have taken a particular form through which geeks come to understand
the moral order that gives the fabric of their political lives warp and weft.

Internet Silk Road 131

Bangalore, March 2000. I am at another bar, this time on one of Bangalores 132

trendiest streets. The bar is called Purple Haze, and I have been taken there, the
day after my arrival, by Udhay Shankar [pg44] N. Inside it is dark and smoky, purple,
filled with men between eighteen and thirty, and decorated with posters of Jimi
Hendrix, Black Sabbath, Jim Morrison (Udhay: ”I hate that band”), Led Zeppelin,
and a somewhat out of place Frank Zappa (Udhay: ”One of my political and
musical heroes”). All of the men, it appears, are singing along with the music,
which is almost without exception heavy metal.
I engage in some stilted conversation with Udhay and his cousin Kirti about the 133

difference between Karnatic music and rock-androll, which seems to boil down to
the following: Karnatic music decreases metabolism and heart rate, leading to a
relaxed state of mind; rock music does the opposite. Given my aim of focusing on
the Internet and questions of openness, I have already decided not to pay
attention to this talk of music. In retrospect, I understand this to have been a
grave methodological error: I underestimated the extent to which the subject of
music has been one of the primary routes into precisely the questions about the
”reorientation of knowledge and power” I was interested in. Over the course of the

Two Bits Christopher M. Kelty 38

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

evening and the following days, Udhay introduced me, as promised, to a range of
people he either knew or worked with in some capacity. Almost all of the people I
met appeared to sincerely love heavy-metal music.
I met Udhay Shankar N. in 1999 through a newsletter, distributed via e-mail, called 134

Tasty Bits from the Technology Front. It was one of a handful of sources I watched
closely while in Berlin, looking for such connections to geek culture. The
newsletter described a start-up company in Bangalore, one that was devoted to
creating a gateway between the Internet and mobile phones, and which was,
according to the newsletter, an entirely Indian operation, though presumably with
U.S. venture funds. I wanted to find a company to compare to Amicas: a start-up,
run by geeks, with a similar approach to the Internet, but halfway around the world
and in a ”culture” that might be presumed to occupy a very different kind of moral
order. Udhay invited me to visit and promised to introduce me to everyone he
knew. He described himself as a ”random networker”; he was not really a
programmer or a designer or a Free Software geek, despite his extensive
knowledge of software, devices, operating systems, and so on, including Free and
Open Source Software. Neither was he a businessman, but rather described
himself as the guy who ”translates between the suits and the techs.” [pg45]

Udhay ”collects interesting people,” and it was primarily through his zest for 135

collecting that I met all the people I did. I met cosmopolitan activists and elite
lawyers and venture capitalists and engineers and cousins and brothers and
sisters of engineers. I met advertising executives and airline flight attendants and
consultants in Bombay. I met journalists and gastroenterologists,
computer-science professors and musicians, and one mother of a robot scientist in
Bangalore. Among them were Muslims, Hindus, Jains, Jews, Parsis, and Christians,
but most of them considered themselves more secular and scientific than religious.
Many were self-educated, or like their U.S. counterparts, had dropped out of
university at some point, but continued to teach themselves about computers and
networks. Some were graduates or employees of the Indian Institute of Science in
Bangalore, an institution that was among the most important for Indian geeks (as
Stanford University is to Silicon Valley, many would say). Among the geeks to
whom Udhay introduced me, there were only two commonalities: the geeks were,
for the most part, male, and they all loved heavy-metal music.41

While I was in Bangalore, I was invited to join a mailing list run by Udhay called 136

Silk-list, an irregular, unmoderated list devoted to ”intelligent conversation.” The
list has no particular focus: long, meandering conversations about Indian politics,
religion, economics, and history erupt regularly; topics range from food to science
fiction to movie reviews to discussions on Kashmir, Harry Potter, the singularity, or
41The question of gender plagues the topic of computer culture. The gendering of hackers and geeks
and the more general exclusion of women in computing have been widely observed by academics. I
can do no more here than direct readers to the increasingly large and sophisticated literature on the
topic. See especially Light, ”When Computers Were Women”; Turkle, The Second Self and Life on the
Screen. With respect to Free Software, see Nafus, Krieger, Leach, ”Patches Dont Have Gender.” More
generally, see Kirkup et al., The Gendered Cyborg; Downey, The Machine in Me; Faulkner, ”Dualisms,
Hierarchies and Gender in Engineering”; Grint and Gill, The Gender-Technology Relation; Helmreich,
Silicon Second Nature; Herring, ”Gender and Democracy in Computer-Mediated Communication”;
Kendall, ”Oh No! Im a NERD!”; Margolis and Fisher, Unlocking the Clubhouse; Green and Adam,
Virtual Gender; P. Hopkins, Sex/Machine; Wajcman, Feminism Confronts Technology and ”Reflections
on Gender and Technology Studies”; and Fiona Wilson, ”Cant Compute, Wont Compute.” Also see the
novels and stories of Ellen Ullman, including Close to the Machine and The Bug: A Novel.

Two Bits Christopher M. Kelty 39

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

nanotechnology. Udhay started Silk-list in 1997 with Bharath Chari and Ram
Sundaram, and the recipients have included hundreds of people around the world,
some very well-known ones, programmers, lawyers, a Bombay advertising
executive, science-fiction authors, entrepreneurs, one member of the start-up
Amicas, at least two transhumanists, one (diagnosed) schizophrenic, and myself.
Active participants usually numbered about ten to fifteen, while many more lurked
in the background.
Silk-list is an excellent index of the relationship between the network of people in 137

Bangalore and their connection to a worldwide community on the Interneta
fascinating story of the power of heterogeneously connected networks and media.
Udhay explained that in the early 1990s he first participated in and then taught
himself to configure and run a modem-based networking system known as a
Bulletin Board Service (BBS) in Bangalore. In 1994 he heard about a book by
Howard Rheingold called The Virtual [pg46] Community, which was his first
introduction to the Internet. A couple of years later when he finally had access to
the Internet, he immediately e-mailed John Perry Barlow, whose work he knew
from Wired magazine, to ask for Rheingolds e-mail address in order to connect with
him. Rheingold and Barlow exist, in some ways, at the center of a certain kind of
geek world: Rheingolds books are widely read popular accounts of the social and
community aspects of new technologies that have often had considerable impact
internationally; Barlow helped found the Electronic Frontier Foundation and is
responsible for popularizing the phrase ”information wants to be free.”42 Both men
had a profound influence on Udhay and ultimately provided him with the ideas
central to running an online community. A series of other connections of similar
sortssome personal, some precipitated out of other media and other channels,
some entirely randomare what make up the membership of Silk-list.43

Like many similar communities of ”digerati” during and after the dot.com boom, 138

Silk-list constituted itself more or less organically around people who ”got it,” that
is, people who claimed to understand the Internet, its transformative potential,
and who had the technical skills to participate in its expansion. Silk-list was not the
only list of its kind. Others such as the Tasty Bits newsletter, the FoRK (Friends of
Rohit Khare) mailing list (both based in Boston), and the Nettime and Syndicate
mailing lists (both based in the Netherlands) ostensibly had different reasons for
existence, but many had the same subscribers and overlapping communities of
geeks. Subscription was open to anyone, and occasionally someone would
stumble on the list and join in, but most were either invited by members or friends
of friends, or they were connected by virtue of cross-posting from any number of
other mailing lists to which members were subscribed.

/pub 139

Silk-list is public in many senses of the word. Practically speaking, one need not be 140

invited to join, and the material that passes through the list is publicly archived
and can be found easily on the Internet. Udhay does his best to encourage

42Originally coined by Steward Brand, the phrase was widely cited after it appeared in Barlows 1994
article ”The Economy of Ideas.”
43On the genesis of ”virtual communities” and the role of Steward Brand, see Turner, ”Where the
Counterculture Met the New Economy.”

Two Bits Christopher M. Kelty 40

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

everyone to speak and to participate, and to discourage forms of discourse that he
thinks [pg47] might silence participants into lurking. Silk-list is not a government,
corporate, or nongovernmental list, but is constituted only through the activity of
geeks finding each other and speaking to each other on this list (which can happen
in all manner of ways: through work, through school, through conferences, through
fame, through random association, etc.). Recall Charles Taylors distinction
between a topical and a metatopical space. Silk-list is not a conventionally topical
space: at no point do all of its members meet face-to-face (though there are
regular meet-ups in cities around the world), and they are not all online at the
same time (though the volume and tempo of messages often reflect who is online
”speaking” to each other at any given moment). It is a topical space, however, if
one considers it from the perspective of the machine: the list of names on the
mailing list are all assembled together in a database, or in a file, on the server that
manages the mailing list. It is a stretch to call this an ”assembly,” however,
because it assembles only the avatars of the mailing-list readers, many of whom
probably ignore or delete most of the messages.
Silk-list is certainly, on the other hand, a ”metatopical” public. It ”knits together” a 141

variety of topical spaces: my discussion with friends in Houston, and other
members discussions with people around the world, as well as the sources of
multiple discussions like newspaper and magazine articles, films, events, and so
on that are reported and discussed online. But Silk-list is not ”The” publicit is far
from being the only forum in which the public sphere is knitted together. Many,
many such lists exist.
In Publics and Counterpublics Michael Warner offers a further distinction. ”The” 142

public is a social imaginary, one operative in the terms laid out by Taylor: as a kind
of vision of order evidenced through stories, images, narratives, and so on that
constitute the imagination of what it means to be part of the public, as well as
plans necessary for creating the public, if necessary. Warner distinguishes,
however, between a concrete, embodied audience, like that at a play, a
demonstration, or a riot (a topical public in Taylors terms), and an audience
brought into being by discourse and its circulation, an audience that is not
metatopical so much as it is a public that is concrete in a different way; it is
concrete not in the face-to-face temporality of the speech act, but in the sense of
calling a public into being through an address that has a different temporality. It is
a public that is concrete in a media-specific [pg48] manner: it depends on the
structures of creation, circulation, use, performance, and reuse of particular kinds
of discourse, particular objects or instances of discourse.
Warners distinction has a number of implications. The first, as Warner is careful to 143

note, is that the existence of particular media is not sufficient for a public to come
into existence. Just because a book is printed does not mean that a public exists; it
requires also that the public take corresponding action, that is, that they read it. To
be part of a particular public is to choose to pay attention to those who choose to
address those who choose to pay attention . . . and so on. Or as Warner puts it,
”The circularity is essential to the phenomenon. A public might be real and
efficacious, but its reality lies in just this reflexivity by which an addressable object
is conjured into being in order to enable the very discourse that gives it
existence.”44
44Warner, ”Publics and Counterpublics,” 51.

Two Bits Christopher M. Kelty 41

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

This ”autotelic” feature of a public is crucial if one is to understand the function of 144

a public as standing outside of power. It simply cannot be organized by the state,
by a corporation, or by any other social totality if it is to have the legitimacy of an
independently functioning public. As Warner puts it, ”A public organizes itself
independently of state institutions, law, formal frameworks of citizenship, or
preexisting institutions such as the church. If it were not possible to think of the
public as organized independently of the state or other frameworks, the public
could not be sovereign with respect to the state. . . . Speaking, writing, and
thinking involve usactively and immediatelyin a public, and thus in the being of
the sovereign.”45

Warners description makes no claim that any public or even The Public actually 145

takes this form in the present: it is a description of a social imaginary or a ”faith”
that allows individuals to make sense of their actions according to a modern idea
of social order. As Warner (and Habermas before him) suggests, the existence of
such autonomous publicsand certainly the idea of ”public opinion” does not always
conform to this idea of order. Often such publics turn out to have been controlled
all along by states, corporations, capitalism, and other forms of social totality that
determine the nature of discourse in insidious ways. A public whose participants
have no faith that it is autotelic and autonomous is little more than a charade
meant to assuage opposition to authority, to transform [pg49] political power and
equality into the negotiation between unequal parties.
Is Silk-list a public? More important, is it a sovereign one? Warners distinction 146

between different media-specific forms of assembly is crucial to answering this
question. If one wants to know whether a mailing list on the Internet is more or
less likely to be a sovereign public than a book-reading public or the
nightly-news-hearing one, then one needs to approach it from the specificity of the
form of discourse. This specificity not only includes whether the form is text or
video and audio, or whether the text is ASCII or Unicode, or the video PAL or NTSC,
but it also includes the means of creation, circulation, and reuse of that discourse
as well.
The on-demand, Internet-mediated book, by contrast, will have a much different 147

temporality of circulation: it might languish in obscurity due to lack of marketing or
reputable authority, or it might get mentioned somewhere like the New York Times
and suddenly become a sensation. For such a book, copyright law (in the form of a
copyleft license) might allow a much wider range of uses and reuses, but it will
restrict certain forms of commercialization of the text. The two publics might
therefore end up looking quite different, overlapping, to be sure, but varying in
terms of their control [pg50] and the terms of admittance. What is at stake is the
power of one or the other such public to appear as an independent and sovereign
entityfree from suspect constraints and controlwhose function is to argue with
other constituted forms of power.
The conventionally published book may well satisfy all the criteria of being a 148

public, at least in the colloquial sense of making a set of ideas and a discourse
widely available and expecting to influence, or receive a response from,
constituted forms of sovereign power. However, it is only the latter ”on-demand”
scheme for publishing that satisfies the criteria of being a recursive public. The

45Ibid., 51-52. See also Warner, Publics and Counterpublics, 69.

Two Bits Christopher M. Kelty 42

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

differences in this example offer a crude indication of why the Internet is so
crucially important to geeks, so important that it draws them together, in its
defense, as an infrastructure that enables the creation of publics that are thought
to be autonomous, independent, and autotelic. Geeks share an idea of moral and
technical order when it comes to the Internet; not only this, but they share a
commitment to maintaining that order because it is what allows them to associate
as a recursive public in the first place. They discover, or rediscover, through their
association, the power and possibility of occupying the position of independent
publicone not controlled by states, corporations, or other organizations, but open
(they claim) through and throughand develop a desire to defend it from
encroachment, destruction, or refeudalization (to use Habermass term for the
fragmentation of the public sphere).
The recursive public is thus not only the book and the discourse around the book. 149

It is not even ”content” expanded to include all kinds of media. It is also the
technical structure of the Internet as well: its software, its protocols and standards,
its applications and software, its legal status and the licenses and regulations that
govern it. This captures both of the reasons why recursive publics are distinctive:
(1) they include not only the discourses of a public, but the ability to make,
maintain, and manipulate the infrastructures of those discourses as well; and (2)
they are ”layered” and include both discourses and infrastructures, to a specific
technical extent (i.e., not all the way down). The meaning of which layers are
important develops more or less immediately from direct engagement with the
medium. In the following example, for instance, Napster represents the potential
of the Internet in miniatureas an applicationbut it also connects immediately to
concerns about the core protocols that govern the Internet and the process of
standardization [pg51] that governs the development of these protocols: hence
recursion through the layers of an infrastructure.
These two aspects of the recursive public also relate to a concern about the 150

fragmentation or refeudalization of the public sphere: there is only one Internet.
Its singularity is not technically determined or by any means necessary, but it is
what makes the Internet so valuable to geeks. It is a contest, the goal of which is
to maintain the Internet as an infrastructure for autonomous and autotelic publics
to emerge as part of The Public, understood as part of an imaginary of moral and
technical order: operating systems and social systems.

From Napster to the Internet 151

On 27 July 2000 Eugen Leitl cross-posted to Silk-list a message with the subject 152

line ”Prelude to the Singularity.” The messages original author, Jeff Bone (not at
the time a member of Silk-list), had posted the ”op-ed piece” initially to the FoRK
mailing list as a response to the Recording Industry Association of Americas (RIAA)
actions against Napster. The RIAA had just succeeded in getting U.S. district judge
Marilyn Hall Patel, Ninth Circuit Court of Appeals, to issue an injunction to Napster
to stop downloads of copyrighted music. Bones op-ed said,

Popular folklore has it that the Internet was designed with decentralized 153

routing protocols in order to withstand a nuclear attack. That is, the Internet
”senses damage” and ”routes around it.” It has been said that, on the Net,
censorship is perceived as damage and is subsequently routed around. The

Two Bits Christopher M. Kelty 43

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

RIAA, in a sense, has cast itself in a censors role. Consequently, the music
industry will be perceived as damageand it will be routed around. There is no
doubt that this will happen, and that technology will evolve more quickly than
businesses and social institutions can; there are numerous highly-visible
projects already underway that attempt to create technology that is
invulnerable to legal challenges of various kinds. Julian Morrison, the originator
of a project (called Fling) to build a fully anonymous/untraceable suite of
network protocols, expresses this particularly eloquently.46

Bones message is replete with details that illustrate the meaning and value of the 154

Internet to geeks, and that help clarify the concept [pg52] of a recursive public.
While it is only one message, it nonetheless condenses and expresses a variety of
stories, images, folklore, and technical details that I elaborate herein.
The Napster shutdown in 2000 soured music fans and geeks alike, and it didnt 155

really help the record labels who perpetrated it either. For many geeks, Napster
represented the Internet in miniature, an innovation that both demonstrated
something on a scope and scale never seen before, and that also connected people
around something they cared deeply abouttheir shared interest in music. Napster
raised interesting questions about its own success: Was it successful because it
allowed people to develop new musical interests on a scope and scale they had
never experienced before? Or was it successful because it gave people with
already existing musical interests a way to share music on a scope and scale they
had never experienced before? That is to say, was it an innovation in marketing or
in distribution? The music industry experienced it as the latter and hence as direct
competition with their own means of distribution. Many music fans experienced it
as the former, what Cory Doctorow nicely labeled ”risk-free grazing,” meaning the
ability to try out an almost unimaginable diversity of music before choosing what
to invest ones interests (and money) in. To a large extent, Napster was therefore a
recapitulation of what the Internet already meant to geeks.
Bones message, the event of the Napster shutdown, and the various responses to 156

it nicely illustrate the two key aspects of the recursive public: first, the way in
which geeks argue not only about rights and ideas (e.g., is it legal to share music?)
but also about the infrastructures that allow such arguing and sharing; second, the
”layers” of a recursive public are evidenced in the immediate connection of Napster
(an application familiar to millions) to the ”decentralized routing protocols” (TCP/IP,
DNS, and others) that made it possible for Napster to work the way it did.
Bones message contains four interrelated points. The first concerns the concept of 157

autonomous technical progress. The title ”Prelude to the Singularity” refers to a
1993 article by Vernor Vinge about the notion of a ”singularity,” a point in time
when the speed of autonomous technological development outstrips the human
capacity to control it.47 The notion of singularity has the status of a kind of
colloquial ”law” similar to Moores Law or Metcalfes Law, as well as signaling links
to a more general literature with roots in [pg53] libertarian or classically liberal ideas

46The rest of this message can be found in the Silk-list archives at
⌜ http://groups.yahoo.com/group/silk-list/message/2869 ⌟ (accessed 18 August 2006). The reference to
”Fling” is to a project now available at ⌜ http://fling.sourceforge.net/ ⌟ (accessed 18 August 2006). The
full archives of Silk-list can be found at ⌜ http://groups.yahoo.com/group/silk-list/ ⌟ and the full archives
of the FoRK list can be found at ⌜ http://www.xent.com/mailman/listinfo/fork/ ⌟ .
47Vinge, ”The Coming Technological Singularity.”

Two Bits Christopher M. Kelty 44

http://groups.yahoo.com/group/silk-list/message/2869
http://fling.sourceforge.net/
http://groups.yahoo.com/group/silk-list/
http://www.xent.com/mailman/listinfo/fork/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

of social order ranging from John Locke and John Stuart Mill to Ayn Rand and David
Brin.48

Bones affinity for transhumanist stories of evolutionary theory, economic theory, 158

and rapid innovation sets the stage for the rest of his message. The crucial
rhetorical gambit here is the appeal to inevitability (as in the emphatic ”there is no
doubt that this will happen”): Bone establishes that he is speaking to an audience
that is accustomed to hearing about the inevitability of technical progress and the
impossibility of legal maneuvering to change it, but his audience may not
necessarily agree with these assumptions. Geeks occupy a spectrum from
”polymath” to ”transhumanist,” a spectrum that includes their understandings of
technological progress and its relation to human intervention. Bones message
clearly lands on the far transhumanist side.
A second point concerns censorship and the locus of power: according to Bone, 159

power does not primarily reside with the government or the church, but comes
instead from the private sector, in this case the coalition of corporations
represented by the RIAA. The significance of this has to do with the fact that a
”public” is expected to be its own sovereign entity, distinct from church, state, or
corporation, and while censorship by the church or the state is a familiar form of
aggression against publics, censorship by corporations (or consortia representing
them), as it strikes Bone and others, is a novel development. Whether the blocking
of file-sharing can legitimately be called censorship is also controversial, and many
Silk-list respondents found the accusation of censorship untenable.
Proving Bones contention, over the course of the subsequent years and court 160

cases, the RIAA and the Motion Picture Association of America (MPAA) have been
given considerably more police authority than even many federal
agenciesespecially with regard to policing networks themselves (an issue which,
given its technical abstruseness, has rarely been mentioned in the mainstream
mass media). Both organizations have not only sought to prosecute filesharers but
have been granted rights to obtain information from Internet Service Providers
about customer activities and have consistently sought the right to secretly
disable (hack into, disable, or destroy) private computers suspected of illegal
activity. Even if these practices may not be defined as censorship per se, they are
nonetheless fine examples of the issues that most exercise geeks: the use of legal
means by a few (in this case, private corporations) to [pg54] suppress or transform
technologies in wide use by the many. They also index the problems of monopoly,
antitrust, and technical control that are not obvious and often find expression, for
example, in allegories of reformation and the control of the music-sharing laity by
papal authorities.
Third, Bones message can itself be understood in terms of the reorientation of 161

knowledge and power. Although what it means to call his message an ”op-ed”
piece may seem obvious, Bones message was not published anywhere in any
conventional sense. It doesnt appear to have been widely cited or linked to.
However, for one day at least, it was a heated discussion topic on three mailing

48Moores Lawnamed for Gordon Moore, former head of Intelstates that the speed and capacity of
computer central processing units (CPUs) doubles every eighteen months, which it has done since
roughly 1970. Metcalfes Lawnamed for Robert Metcalfe, inventor of Ethernetstates that the utility of
a network equals the square of the number of users, suggesting that the number of things one can
do with a network increases exponentially as members are added linearly.

Two Bits Christopher M. Kelty 45

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

lists, including Silk-list. ”Publication” in this instance is a different kind of event
than getting an op-ed in the New York Times.
The material on Silk-list rests somewhere between private conversation (in a 162

public place, perhaps) and published opinion. No editor made a decision to
”publish” the messageBone just clicked ”send.” However, as with any print
publication, his piece was theoretically accessible by anyone, and whats more, a
potentially huge number of copies may be archived in many different places (the
computers of all the participants, the server that hosts the list, the Yahoo! Groups
servers that archive it, Googles search databases, etc.). Bones message
exemplifies the recursive nature of the recursive public: it is a public statement
about the openness of the Internet, and it is an example of the new forms of
publicness it makes possible through its openness.
The constraints on who speaks in a public sphere (such as the power of printers 163

and publishers, the requirements of licensing, or issues of cost and accessibility)
are much looser in the Internet era than in any previous one. The Internet gives a
previously unknown Jeff Bone the power to dash off a manifesto without so much
as a second thought. On the other hand, the ease of distribution belies the
difficulty of actually being heard: the multitudes of other Jeff Bones make it much
harder to get an audience. In terms of publics, Bones message can constitute a
public in the same sense that a New York Times op-ed can, but its impact and
meaning will be different. His message is openly and freely available for as long as
there are geeks and laws and machines that maintain it, but the New York Times
piece will have more authority, will be less accessible, and, most important, will
not be available to just anyone. Geeks imagine a space where anyone can speak
with similar reach and staying [pg55] powereven if that does not automatically imply
authorityand they imagine that it should remain open at all costs. Bone is
therefore interested precisely in a technical infrastructure that ensures his right to
speak about that infrastructure and offer critique and guidance concerning it.
The ability to create and to maintain such a recursive public, however, raises the 164

fourth and most substantial point that Bones message makes clear. The leap to
speaking about the ”decentralized routing protocols” represents clearly the shared
moral and technical order of geeks, derived in this case from the specific details of
the Internet. Bones post begins with a series of statements that are part of the
common repertoire of technical stories and images among geeks. Bone begins by
making reference to the ”folklore” of the Internet, in which routing protocols are
commonly believed to have been created to withstand a nuclear attack. In calling
it folklore he suggests that this is not a precise description of the Internet, but an
image that captures its design goals. Bone collapses it into a more recent bit of
folklore: ”The Internet treats censorship as damage and routes around it.”49 Both
bits of folklore are widely circulated and cited; they encapsulate one of the core

49This quotation from the 1990s is attributed to Electronic Frontier Foundations founder and
”cyber-libertarian” John Gilmore. Whether there [pg319] is any truth to this widespread belief expressed
in the statement is not clear. On the one hand, the protocol to which this folklore refersthe general
system of ”message switching” and, later, ”packet switching” invented by Paul Baran at RAND
Corporationdoes seem to lend itself to robustness (on this history, see Abbate, Inventing the
Internet). However, it is not clear that nuclear threats were the only reason such robustness was a
design goal; simply to ensure communication in a distributed network was necessary in itself.
Nonetheless, the story has great currency as a myth of the nature and structure of the Internet. Paul
Edwards suggests that both stories are true (”Infrastructure and Modernity,” 216-20, 225n13).

Two Bits Christopher M. Kelty 46

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

intellectual ideas about the architecture of the Internet, that is, its open and
distributed interconnectivity. There is certainly a specific technical backdrop for
this suggestion: the TCP/IP ”internetting” protocols were designed to link up
multiple networks without making them sacrifice their autonomy and control.
However, Bone uses this technical argument more in the manner of a social
imaginary than of a theory, that is, as a way of thinking about the technical (and
moral) order of the Internet, of what the Internet is supposed to be like.
In the early 1990s this version of the technical order of the Internet was part of a 165

vibrant libertarian dogma asserting that the Internet simply could not be governed
by any land-based sovereign and that it was fundamentally a place of liberty and
freedom. This was the central message of people such as John Perry Barlow, John
Gilmore, Howard Rheingold, Esther Dyson, and a host of others who populated
both the pre-1993 Internet (that is, before the World Wide Web became widely
available) and the pages of magazines such as Wired and Mondo 2000the same
group of people, incidentally, whose ideas were visible and meaningful to Udhay
Shankar and his friends in India even prior to Internet access there, not to mention
to Sean and Adrian in Boston, and artists and activists in [pg56] Europe, all of whom
often reacted more strongly against this libertarian aesthetic.
For Jeff Bone (and a great many geeks), the folkloric notion that ”the net treats 166

censorship as damage” is a very powerful one: it suggests that censorship is
impossible because there is no central point of control. A related and oft-cited
sentiment is that ”trying to take something off of the Internet is like trying to take
pee out of a pool.” This is perceived by geeks as a virtue, not a drawback, of the
Internet.
For Jeff Bone (and a great many geeks), the folkloric notion that ”the net treats 167

censorship as damage” is a very powerful one: it suggests that censorship is
impossible because there is no central point of control. A related and oft-cited
sentiment is that ”trying to take something off of the Internet is like trying to take
pee out of a pool.” This is perceived by geeks as a virtue, not a drawback, of the
Internet.
On the other side of the spectrum, however, this view of the unregulatable nature 168

of the Internet has been roundly criticized, most prominently by Lawrence Lessig,
who is otherwise often in sympathy with geek culture. Lessig suggests that just
because the Internet has a particular structure does not mean that it must always
be that way.50 His argument has two prongs: first, that the Internet is structured
the way it is because it is made of code that people write, and thus it could have
been and will be otherwise, given that there are changes and innovations
occurring all the time; second, that the particular structure of the Internet
therefore governs or regulates behavior in particular ways: Code is Law. So while it
may be true that no one can make the Internet ”closed” by passing a law, it is also
true that the Internet could become closed if the technology were to be altered for
that purpose, a process that may well be nudged and guided by laws, regulations,
and norms.
Lessigs critique is actually at the heart of Bones concern, and the concern of 169

recursive publics generally: the Internet is a contest and one that needs to be

50Lessig, Code and Other Laws of Cyberspace. See also Gillespie, ”Engineering a Principle” on the
related history of the ”end to end” design principle.

Two Bits Christopher M. Kelty 47

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

repeatedly and constantly replayed in order to maintain it as the legitimate
infrastructure through which geeks associate with one another. Geeks argue in
detail about what distinguishes technical factors from legal or social ones.
Openness on the Internet is complexly intertwined with issues of availability, price,
legal restriction, usability, elegance of design, censorship, trade secrecy, and so
on. [pg57]

However, even where openness is presented as a natural tendency for technology 170

(in oft-made analogies with reproductive fitness and biodiversity, for example), it is
only a partial claim in that it represents only one of the ”layers” of a recursive
public. For instance, when Bone suggests that the net is ”invulnerable to legal
attack” because ”technology will evolve more quickly than businesses and social
institutions can,” he is not only referring to the fact that the Internets novel
technical configuration has few central points of control, which makes it difficult
for a single institution to control it, but also talking about the distributed, loosely
connected networks of people who have the right to write and rewrite software
and deal regularly with the underlying protocols of the Internetin other words, of
geeks themselves.
Many geeks, perhaps including Bone, discover the nature of this order by coming 171

to understand how the Internet workshow it works technically, but also who
created it and how. Some have come to this understanding through participation
in Free Software (an exemplary ”recursive public”), others through stories and
technologies and projects and histories that illuminate the process of creating,
growing, and evolving the Internet. The story of the process by which the Internet
is standardized is perhaps the most well known: it is the story of the Internet
Engineering Task Force and its Requests for Comments system.

Requests for Comments 172

For many geeks, the Internet Engineering Task Force (IETF) and its Requests for 173

Comments (RFC) system exemplify key features of the moral and technical order
they share, the ”stories and practices” that make up a social imaginary, according
to Charles Taylor. The IETF is a longstanding association of Internet engineers who
try to help disseminate some of the core standards of the Internet through [pg58] the
RFC process. Membership is open to individuals, and the association has very little
real control over the structure or growth of the Internetonly over the key process
of Internet standardization. Its standards rarely have the kind of political
legitimacy that one associates with international treaties and the standards bodies
of Geneva, but they are nonetheless de facto legitimate. The RFC process is an
unusual standards process that allows modifications to existing technologies to be
made before the standard is finalized. Together Internet standards and the RFC
process form the background of the Napster debate and of Jeff Bones claims about
”internet routing protocols.”
A famous bit of Internet-governance folklore expresses succinctly the combination 174

of moral and technical order that geeks share (attributed to IETF member David
Clark): ”We reject kings, presidents, and voting. We believe in rough consensus
and running code.”51 This quote emphasizes the necessity of arguing with and

51This is constantly repeated on the Internet and attributed to David Clark, but no one really knows

Two Bits Christopher M. Kelty 48

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

through technology, the first aspect of a recursive public; the only argument that
convinces is working code. If it works, then it can be implemented; if it is
implemented, it will ”route around” the legal damage done by the RIAA. The notion
of ”running code” is central to an understanding of the relationship between
argumentby- technology and argument-by-talk for geeks. Very commonly, the
response by geeks to people who argued about Napster that summerand the
courts decisions regarding itwas to dismiss their complaints as mere talk. Many
suggested that if Napster were shut down, thousands more programs like it would
spring up in its wake. As one mailing-list participant, Ashish ”Hash” Gulhati, put it,
”It is precisely these totally unenforceable and mindless judicial decisions that will
start to look like self-satisfied wanking when theres code out there which will make
the laws worth less than the paper theyre written on. When it comes to fighting
this shit in a way that counts, everything that isnt code is just talk.”52

Such powerful rhetoric often collapses the process itself, for someone has to write 175

the code. It can even be somewhat paradoxical: there is a need to talk forcefully
about the need for less talk and more code, as demonstrated by Eugen Leitl when I
objected that Silk-listers were ”just talking”: ”Of course we should talk. Did my last
post consist of some kickass Python code adding sore-missed functionality to
Mojonation? Nope. Just more meta-level waffle about the importance of waffling
less, coding more. I lack the [pg59] proper mental equipment upstairs for being a
good coder, hence I attempt to corrupt young impressionable innocents into
contributing to the cause. Unashamedly so. So sue me.”53

Eugens flippancy reveals a recognition that there is a political component to 176

coding, even if, in the end, talk disappears and only code remains. Though Eugen
and others might like to adopt a rhetoric that suggests ”it will just happen,” in
practice none of them really act that way. Rather, the activities of coding, writing
software, or improving and diversifying the software that exists are not inevitable
or automatic but have specific characteristics. They require time and ”the proper
mental equipment.” The inevitability they refer to consists not in some fantasy of
machine intelligence, but in a social imaginary shared by many people in loosely
connected networks who spend all their free time building, downloading, hacking,
testing, installing, patching, coding, arguing, blogging, and proselytizingin short,
creating a recursive public enabled by the Internet.
Jeff Bones op-ed piece, which is typically enthusiastic about the inevitability of new 177

technologies, still takes time to reference one of thousands (perhaps tens of
thousands) of projects as worthy of attention and support, a project called Fling,
which is an attempt to rewrite the core protocols of the Internet.54 The goal of the
project is to write a software implementation of these protocols with the explicit

where or when he stated it. It appears in a 1997 interview of David Clark by Jonathan Zittrain, the
transcript of which is available at ⌜ http://cyber.law.harvard.edu/jzfallsem//trans/clark/ ⌟ (accessed 18
August 2006).
52Ashish ”Hash” Gulhati, e-mail to Silk-list mailing list, 9 September 2000,
⌜ http://groups.yahoo.com/group/silk-list/message/3125 ⌟ .
53Eugen Leitl, e-mail to Silk-list mailing list, 9 September 2000,
⌜ http://groups.yahoo.com/group/silk-list/message/3127 ⌟ . Python is a programming language. Mojonation
was a very promising peer-to-peer application in 2000 that has since ceased to exist.
54In particular, this project focuses on the Transmission Control Protocol (TCP), the User Datagram
Protocol (UDP), and the Domain Name System (DNS). The first two have remained largely stable over
the last thirty years, but the DNS system has been highly politicized (see Mueller, Ruling the Root).

Two Bits Christopher M. Kelty 49

http://cyber.law.harvard.edu/jzfallsem//trans/clark/
http://groups.yahoo.com/group/silk-list/message/3125
http://groups.yahoo.com/group/silk-list/message/3127
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

goal of making them ”anonymous, untraceable, and untappable.” Fling is not a
corporation, a start-up, or a university research project (though some such
projects are); it is only a Web site. The core protocols of the Internet, contained in
the RFCs, are little more than documents describing how computers should
interact with each other. They are standards, but of an unusual kind.55 Bones leap
from a discussion about Napster to one about the core protocols of the Internet is
not unusual. It represents the second aspect of a recursive public: the importance
of understanding the Internet as a set of ”layers,” each enabling the next and each
requiring an openness that both prevents central control and leads to maximum
creativity.
RFCs have developed from an informal system of memos into a formal 178

standardization process over the life of the Internet, as the IETF and the Internet
Society (ISOC) have become more bureaucratic entities. The process of writing
and maintaining these documents is particular to the Internet, precisely because
the Internet [pg60] is the kind of network experiment that facilitates the sharing of
resources across administratively bounded networks. It is a process that has
allowed all the experimenters to both share the network and to propose changes
to it, in a common space. RFCs are primarily suggestions, not demands. They are
”public domain” documents and thus available to everyone with access to the
Internet. As David Clarks reference to ”consensus and running code”
demonstrates, the essential component of setting Internet standards is a good,
working implementation of the protocols. Someone must write software that
behaves in the ways specified by the RFC, which is, after all, only a document, not
a piece of software. Different implementations of, for example, the TCP/IP protocol
or the File Transfer Protocol (ftp) depend initially on individuals, groups, and/or
corporations building them into an operating-system kernel or a piece of user
software and subsequently on the existence of a large number of people using the
same operating system or application.
In many cases, subsequent to an implementation that has been disseminated and 179

adopted, the RFCs have been amended to reflect these working implementations
and to ordain them as standards. So the current standards are actually
bootstrapped, through a process of writing RFCs, followed by a process of creating
implementations that adhere loosely to the rules in the RFC, then observing the
progress of implementations, and then rewriting RFCs so that the process begins
all over again. The fact that geeks can have a discussion via e-mail depends on
the very existence of both an RFC to define the e-mail protocol and
implementations of software to send the e-mails.
This standardization process essentially inverts the process of planning. Instead of 180

planning a system, which is then standardized, refined, and finally built according
to specification, the RFC process allows plans to be proposed, implemented,
refined, reproposed, rebuilt, and so on until they are adopted by users and become
the standard approved of by the IETF. The implication for most geeks is that this
process is permanently and fundamentally open: changes to it can be proposed,
implemented, and adopted without end, and the better a technology becomes, the
more difficult it becomes to improve on it, and therefore the less reason there is to
subvert it or reinvent it. Counterexamples, in which a standard emerges but no
55On Internet standards, see Schmidt and Werle, Coordinating Technology; Abbate and Kahin,
Standards Policy for Information Infrastructure.

Two Bits Christopher M. Kelty 50

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

one adopts it, are also plentiful, and they suggest that the standardization process
extends beyond the proposal-implementation-proposal-standard [pg61] circle to
include the problem of actually convincing users to switch from one working
technology to a better one. However, such failures of adoption are also seen as a
kind of confirmation of the quality or ease of use of the current solution, and they
are all the more likely to be resisted when some organization or political entity
tries to force users to switch to the new standardsomething the IETF has refrained
from doing for the most part.

Conclusion: Recursive Public 181

Napster was a familiar and widely discussed instance of the ”reorientation of 182

power and knowledge” (or in this case, power and music) wrought by the Internet
and the practices of geeks. Napster was not, however, a recursive public or a Free
Software project, but a dot-com-inspired business plan in which proprietary
software was given away for free in the hopes that revenue would flow from the
stock market, from advertising, or from enhanced versions of the software.
Therefore, geeks did not defend Napster as much as they experienced its legal
restriction as a wake-up call: the Internet enables Napster and will enable many
other things, but laws, corporations, lobbyists, money, and governments can
destroy all of it.
I started this chapter by asking what draws geeks together: what constitutes the 183

chain that binds geeks like Sean and Adrian to hipsters in Berlin and to
entrepreneurs and programmers in Bangalore? What constitutes their affinity if it
is not any of the conventional candidates like culture, nation, corporation, or
language? A colloquial answer might be that it is simply the Internet that brings
them together: cyberspace, virtual communities, online culture. But this doesnt
answer the question of why? Because they can? Because Community Is Good? If
mere association is the goal, why not AOL or a vast private network provided by
Microsoft?
My answer, by contrast, is that geeks affinity with one another is structured by 184

shared moral and technical understandings of order. They are a public, an
independent public that has the ability to build, maintain, and modify itself, that is
not restricted to the activities of speaking, writing, arguing, or protesting.
Recursive publics form through their experience with the Internet precisely
because the Internet is the kind of thing they can inhabit and transform. Two [pg62]

things make recursive publics distinctive: the ability to include the practice of
creating this infrastructure as part of the activity of being public or contesting
control; and the ability to ”recurse” through the layers of that infrastructure,
maintaining its publicness at each level without making it into an unchanging,
static, unmodifiable thing.
The affinity constituted by a recursive public, through the medium of the Internet, 185

creates geeks who understand clearly what association through the Internet
means. This affinity structures their imagination of what the Internet is and
enables: creation, distribution, modification of knowledge, music, science,
software. The infrastructurethis-infrastructure-here, the Internetmust be
understood as part of this imaginary (in addition to being a pulsating tangle of
computers, wires, waves, and electrons).

Two Bits Christopher M. Kelty 51

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

The Internet is not the only medium for such association. A corporation, for 186

example, is also based on a shared imaginary of the economy, of how markets,
exchanges, and business cycles are supposed to work; it is the creation of a
concrete set of relations and practices, one that is generally inflexibleeven in this
age of socalled flexible capitalismbecause it requires a commitment of time,
humans, and capital. Even in fast capitalism one needs to rent office space, buy
toilet paper, install payroll software, and so on.
The Internet is not the only medium for such association. A corporation, for 187

example, is also based on a shared imaginary of the economy, of how markets,
exchanges, and business cycles are supposed to work; it is the creation of a
concrete set of relations and practices, one that is generally inflexibleeven in this
age of socalled flexible capitalismbecause it requires a commitment of time,
humans, and capital. Even in fast capitalism one needs to rent office space, buy
toilet paper, install payroll software, and so on.
The urgency evidenced in the case of Napster (and repeated in numerous other 188

instances, such as the debate over net neutrality) is linked to a moral idea of order
in which there is a shared imaginary[pg63] of The Public, and not only a vast
multiplicity of competing publics. It is an urgency linked directly to the fact that
the Internet provides geeks with a platform, an environment, an infrastructure
through which they not only associate, but create, and do so in a manner that is
widely felt to be autonomous, autotelic, and independent of at least the most
conventional forms of power: states and corporationsindependent enough, in fact,
that both states and corporations can make widespread use of this infrastructure
(can become geeks themselves) without necessarily endangering its
independence.

Two Bits Christopher M. Kelty 52

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

2.Protestant Reformers, Polymaths, Transhumanists 189

Geeks talk a lot. They dont talk about recursive publics. They dont often talk about 190

imaginations, infrastructures, moral or technical orders. But they do talk a lot. A
great deal of time and typing is necessary to create software and networks:
learning and talking, teaching and arguing, telling stories and reading polemics,
reflecting on the world in and about the infrastructure one inhabits. In this chapter
I linger on the stories geeks tell, and especially on stories and reflections that mark
out contemporary problems of knowledge and powerstories about grand issues
like progress, enlightenment, liberty, and freedom.
Issues of enlightenment, progress, and freedom are quite obviously still part of a 191

”social imaginary,” especially imaginations of the relationship of knowledge and
enlightenment to freedom and autonomy so clearly at stake in the notion of a
public or public [pg65] sphere. And while the example of Free Software illuminates
how issues of enlightenment, progress, and freedom are proposed, contested, and
implemented in and through software and networks, this chapter contains stories
that are better understood as ”usable pasts”less technical and more accessible
narratives that make sense of the contemporary world by reflecting on the past
and its difference from today.
Usable pasts is a more charitable term for what might be called modern myths 192

among geeks: stories that the tellers know to be a combination of fact and fiction.
They are told not in order to remember the past, but in order to make sense of the
present and of the future. They make sense of practices that are not questioned in
the doing, but which are not easily understood in available intellectual or colloquial
terms. The first set of stories I relate are those about the Protestant Reformation:
allegories that make use of Catholic and Protestant churches, laity, clergy, high
priests, and reformation-era images of control and liberation. It might be
surprising that geeks turn to the past (and especially to religious allegory) in order
to make sense of the present, but the reason is quite simple: there are no
”ready-to-narrate” stories that make sense of the practices of geeks today.
Precisely because geeks are ”figuring out” things that are not clear or obvious,
they are of necessity bereft of effective ways of talking about it. The Protestant
Reformation makes for good allegory because it separates power from control; it
draws on stories of catechism and ritual, alphabets, pamphlets and liturgies,
indulgences and self-help in order to give geeks a way to make sense of the
distinction between power and control, and how it relates to the technical and
political economy they occupy. The contemporary relationship among states,
corporations, small businesses, and geeks is not captured by familiar oppositions
like commercial/noncommercial, for/against private property, or
capitalist/socialistit is a relationship of reform and conversion, not revolution or
overthrow.
Usable pasts are stories, but they are stories that reflect specific attitudes and 193

specific ways of thinking about the relationship between past, present, and future.
Geeks think and talk a lot about time, progress, and change, but their conclusions
and attitudes are by no means uniform. Some geeks are much more aware of the
specific historical circumstances and contexts in which they operate, others less
so. In this chapter I pose a question via Michel [pg66] Foucaults famous short piece
”What Is Enlightenment?” Namely, are geeks modern? For Foucault, rereading

Two Bits Christopher M. Kelty 53

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Kants eponymous piece from 1784, the problem of being modern (or of an age
being ”enlightened”) is not one of a period or epoch that people live through;
rather, it involves a subjective relationship, an attitude. Kants explanation of
enlightenment does not suggest that it is itself a universal, but that it occurs
through a form of reflection on what difference the changes of ones immediate
historical past make to ones understanding of the supposed universals of a much
longer historythat is, one must ask why it is necessary to think the way one does
today about problems that have been confronted in ages past. For Foucault, such
reflections must be rooted in the ”historically unique forms in which the
generalities of our relations . . . have been problematized.”56 Thus, I want to ask
of geeks, how do they connect the historically unique problems they confrontfrom
the Internet to Napster to intellectual property to sharing and reusing source
codeto the generalities of relations in which they narrate them as problems of
liberty, knowledge, power, and enlightenment? Or, as Foucault puts it, are they
modern in this sense? Do they ”despise the present” or not?
The attitudes that geeks take in responding to these questions fall along a 194

spectrum that I have identified as ranging from ”polymaths” to ”transhumanists.”
These monikers are drawn from real discussions with geeks, but they dont
designate a kind of person. They are ”subroutines,” perhaps, called from within a
larger program of moral and technical imaginations of order. It is possible for the
same person to be a polymath at work and a transhumanist at home, but generally
speaking they are conflicting and opposite mantles. In polymath routines,
technology is an intervention into a complicated, historically unique field of people,
customs, organizations, other technologies, and laws; in transhumanist routines,
technology is seen as an inevitable forcea product of human action, but not of
human designthat is impossible to control or resist through legal or customary
means.

Protestant Reformation 195

Geeks love allegories about the Protestant Reformation; they relish stories of 196

Luther and Calvin, of property and iconoclasm, of reformation [pg67] over revolution.
Allegories of Protestant revolt allow geeks to make sense of the relationship
between the state (the monarchy), large corporations (the Catholic Church), the
small start-ups, individual programmers, and adepts among whom they spend
most of their time (Protestant reformers), and the laity (known as ”lusers” and
”sheeple”). It gives them a way to assert that they prefer reformation (to save
capitalism from the capitalists) over revolution. Obviously, not all geeks tell stories
of ”religious wars” and the Protestant Reformation, but these images reappear
often enough in conversations that most geeks will more or less instantly
recognize them as a way of making sense of modern corporate, state, and political
power in the arena of information technology: the figures of Pope, the Catholic
Church, the Vatican, the monarchs of various nations, the laity, the rebel adepts
like Luther and Calvin, as well as models of sectarianism, iconoclasm (”In the
beginning was the Command Line”), politicoreligious power, and arcane
theological argumentation.57 The allegories that unfold provide geeks a way to

56Foucault, ”What Is Enlightenment,” 319.
57Stephenson, In the Beginning Was the Command Line.

Two Bits Christopher M. Kelty 54

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

make sense of a similarly complex modern situation in which it is not the Church
and the State that struggle, but the Corporation and the State; and what geeks
struggle over are not matters of church doctrine and organization, but matters of
information technology and its organization as intellectual property and economic
motor. I stress here that this is not an analogy that I myself am making (though I
happily make use of it), but is one that is in wide circulation among the geeks I
study. To the historian or religious critic, it may seem incomplete, or absurd, or
bizarre, but it still serves a specific function, and this is why I highlight it as one
component of the practical and technical ideas of order that geeks share.
At the first level are allegories of ”religious war” or ”holy war” (and increasingly, of 197

”jihads”). Such stories reveal a certain cynicism: they describe a technical war of
details between two pieces of software that accomplish the same thing through
different means, so devotion to one or the other is seen as a kind of arbitrary
theological commitment, at once reliant on a pure rationality and requiring
aesthetic or political judgment. Such stories imply that two technologies are
equally good and equally bad and that ones choice of sect is thus an entirely
nonrational one based in the vicissitudes of background and belief. Some people
are zealous proselytizers of a technology, some are not. As one Usenet message
explains: ”Religious wars have tended to occur over theological and doctrinal [pg68]

technicalities of one sort or another. The parallels between that and the computing
technicalities that result in computing wars are pretty strong.”58

Perhaps the most familiar and famous of these wars is that between Apple and 198

Microsoft (formerly between Apple and IBM), a conflict that is often played out in
dramatic and broad strokes that imply fundamental differences, when in fact the
differences are extremely slight.59 Geeks are also familiar with a wealth of less
well-known ”holy wars”: EMACS versus vi; KDE versus Gnome; Linux versus BSD;
Oracle versus all other databases.60

Often the language of the Reformation creeps playfully into otherwise serious 199

attempts to make aesthetic judgments about technology, as in this analysis of the
programming language tcl/tk:

Its also not clear that the primary design criterion in tcl, perl, or Visual BASIC 200

was visual beautynor, probably, should it have been. Ousterhout said people
will vote with their feet. This is important. While the High Priests in their Ivory
Towers design pristine languages of stark beauty and balanced perfection for
their own appreciation, the rest of the mundane world will in blind and
contented ignorance go plodding along using nasty little languages like those
enumerated above. These poor sots will be getting a great deal of work done,
putting bread on the table for their kids, and getting home at night to share it
with them. The difference is that the priests will shake their fingers at the laity,

58Message-ID:
⌜
59The Apple-Microsoft conflict was given memorable expression by Umberto Eco in a widely read
piece that compared the Apple user interface [pg320] to Catholicism and the PC user interface to
Protestantism (”La bustina di Minerva,” Espresso, 30 September 1994, back page).
60One entry on Wikipedia differentiates religious wars from run-of-the-mill ”flame wars” as follows:
”Whereas a flame war is usually a particular spate of flaming against a non-flamy background, a holy
war is a drawn-out disagreement that may last years or even span careers” (”Flaming [Internet],”
⌜ http://en.wikipedia.org/wiki/Flame_war ⌟ [accessed 16 January 2006]).

Two Bits Christopher M. Kelty 55

http://groups.google.com/groups?selm=tht55.221960$701.2930569@news4.giganews.com
http://en.wikipedia.org/wiki/Flame_war
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

and the laity wont care, because theyll be in bed asleep.61

In this instance, the ”religious war” concerns the difference between academic 201

programming languages and regular programmers made equivalent to a
distinction between the insularity of the Catholic Church and the self-help of a
protestant laity: the heroes (such as tcl/tk, perl, and pythonall Free Software) are
the ”nasty little languages” of the laity; the High Priests design (presumably) Algol,
LISP, and other ”academic” languages.
At a second level, however, the allegory makes precise use of Protestant 202

Reformation details. For example, in a discussion about the various fights over the
Gnu C Compiler (gcc), a central component of the various UNIX operating systems,
Christopher Browne posted this counter-reformation allegory to a Usenet
group.

The EGCS project was started around two years ago when G++ (and GCC) 203

development got pretty ”stuck.” EGCS sought to integrate together [pg69] a
number of the groups of patches that people were making to the GCC ”family.”
In effect, there had been a ”Protestant Reformation,” with split-offs of:

a) The GNU FORTRAN Denomination; 204

b) The Pentium Tuning Sect; 205

c) The IBM Haifa Instruction Scheduler Denomination; 206

d) The C++ Standard Acolytes. 207

These groups had been unable to integrate their efforts (for various reasons) 208

with the Catholic Version, GCC 2.8. The Ecumenical GNU Compiler Society
sought to draw these groups back into the Catholic flock. The project was fairly
successful; GCC 2.8 was succeeded by GCC 2.9, which was not a direct
upgrade from 2.8, but rather the results of the EGCS project. EGCS is now
GCC.62

In addition to the obvious pleasure with which they deploy the sectarian aspects of 209

the Protestant Reformation, geeks also allow themselves to see their struggles as
those of Luther-like adepts, confronted by powerful worldly institutions that are
distinct but intertwined: the Catholic Church and absolutist monarchs. Sometimes
these comparisons are meant to mock theological argument; sometimes they are
more straightforwardly hagiographic. For instance, a 1998 article in Salon
compares Martin Luther and Linus Torvalds (originator of the Linux kernel).

In Luthers Day, the Roman Catholic Church had a near-monopoly on the 210

cultural, intellectual and spiritual life of Europe. But the principal source text
informing that lifethe Biblewas off limits to ordinary people. . . . Linus Torvalds
is an information-age reformer cut from the same cloth. Like Luther, his
journey began while studying for ordination into the modern priesthood of
computer scientists at the University of Helsinkifar from the seats of power in
Redmond and Silicon Valley. Also like Luther, he had a divine, slightly nutty

61Message-ID:
⌜
62Message-ID:
⌜ It should be noted, in case the reader is unsure how serious this is, that EGCS stood for Extended
GNU Compiler System, not Ecumenical GNU Compiler Society.

Two Bits Christopher M. Kelty 56

http://groups.google.com/groups?selm=369tva$8l0@csnews.cs.colorado.edu
http://groups.google.com/groups?selm=c1dz4.145472$mb.2669517@news6.giganews.com
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

idea to remove the intervening bureaucracies and put ordinary folks in a direct
relationship to a higher powerin this case, their computers. Dissolving the
programmer-user distinction, he encouraged ordinary people to participate in
the development of their computing environment. And just as Luther sought to
make the entire sacramental shebangthe wine, the bread and the translated
Wordavailable to the hoi polloi, Linus seeks to revoke the developers
proprietary access to the OS, insisting that the full operating system source
code be deliveredwithout costto every ordinary Joe at the desktop.63 [pg70]

Adepts with strong convictionsmonks and priests whose initiation and mastery are 211

evidentmake the allegory work. Other uses of Christian iconography are less, so to
speak, faithful to the sources. Another prominent personality, Richard Stallman, of
the Free Software Foundation, is prone to dressing as his alter-ego, St. IGNUcius,
patron saint of the church of EMACSa church with no god, but intense devotion to a
baroque text-processing program of undeniable, nigh-miraculous power.64

Often the appeal of Reformation-era rhetoric comes from a kind of indictment of 212

the present: despite all this high tech, super-fabulous computronic wonderfulness,
we are no less feudal, no less violent, no less arbitrary and undemocratic; which is
to say, geeks have progressed, have seen the light and the way, but the rest of
societyand especially management and marketinghave not. In this sense,
Reformation allegories are stories of how ”things never change.”
But the most compelling use of the Protestant Reformation as usable past comes 213

in the more detailed understandings geeks have of the political economy of
information technology. The allegorization of the Catholic Church with Microsoft,
for instance, is a frequent component, as in this brief message regarding start-up
key combinations in the Be operating system: ”These secret handshakes are
intended to reinforce a cabalistic high priesthood and should not have been
disclosed to the laity. Forget you ever saw this post and go by [sic] something from
Microsoft.”65

More generally, large corporations like IBM, Oracle, or Microsoft are made to stand 214

in for Catholicism, while bureaucratic congresses and parliaments with their
lobbyists take on the role of absolutist monarchs and their cronies. Geeks can then
see themselves as fighting to uphold Christianity (true capitalism) against the
church (corporations) and to be reforming a way of life that is corrupted by church
and monarchs, instead of overthrowing through revolution a system they believe
to be flawed. There is a historically and technically specific component of this
political economy in which it is in the interest of corporations like IBM and
Microsoft to keep users ”locked as securely to Big Blue as an manacled wretch in a
medieval dungeon.”66

Such stories appeal because they bypass the language of modern American 215

politics (liberal, conservative, Democrat, Republican) in which there are only two

63”Martin Luther, Meet Linus Torvalds,” Salon, 12 November 1998,
⌜ http://archive.salon.com/21st/feature/1998/11/12feature.html ⌟ (accessed 5 February 2005).
64See ⌜ http://www.stallman.org/saint.html ⌟ (accessed 5 February 2005) and
⌜ http://www.dina.kvl.dk/ abraham/religion/ ⌟ (accessed 5 February 2005). On EMACS, see chapter 6.
65Message-ID: 6ms27l$6e1@bgtnsc01.worldnet.att.net. In one very humorous case the comparison
is literalized ”Microsoft acquires Catholic Church” (Message-ID:
gaijin-870804300-dragonwing@sec.lia.net).
66Paul Fusco, ”The Gospel According to Joy,” New York Times, 27 March 1988, Sunday Magazine, 28.

Two Bits Christopher M. Kelty 57

http://archive.salon.com/21st/feature/1998/11/12feature.html
http://www.stallman.org/saint.html
http://www.dina.kvl.dk/~abraham/religion/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

sides to any issue. They also bypass an [pg71] argument between capitalism and
socialism, in which if you are not pro-capitalism you must be a communist. They
are stories that allow the more pragmatist of the geeks to engage in intervention
and reformation, rather than revolution. Though Ive rarely heard it articulated so
bluntly, the allegory often implies that one must ”save capitalism from the
capitalists,” a sentiment that implies at least some kind of human control over
capitalism.
In fact, the allegorical use of the Reformation and the church generates all kinds of 216

clever comparisons. A typical description of such comparisons might go like this:
the Catholic Church stands in for large, publicly traded corporations, especially
those controlling large amounts of intellectual property (the granting of which
might roughly be equated with the ceremonies of communion and confession) for
which they depend on the assistance and support of national governments.
Naturally, it is the storied excesses of the churchindulgences, liturgical complexity,
ritualistic ceremony, and corruptionwhich make for easy allegory. Modern
corporations can be figured as a small, elite papal body with theologians
(executives and their lawyers, boards of directors and their lawyers), who
command a much larger clergy (employees), who serve a laity (consumers) largely
imagined to be sinful (underspending on music and moviesindeed, even ”stealing”
them) and thus in need of elaborate and ritualistic cleansing (advertising and
lawsuits) by the church. Access to grace (the American Dream) is mediated only
by the church and is given form through the holy acts of shopping and home
improvement. The executives preach messages of damnation to the government,
messages most government officials are all too willing to hear: do not tamper with
our market share, do not affect our pricing, do not limit our ability to expand these
markets. The executives also offer unaccountable promises of salvation in the
guise of deregulation and the American version of ”reform”the demolition of state
and national social services. Government officials in turn have developed their
own ”divine right of kings,” which justifies certain forms of manipulation (once
called ”elections”) of succession. Indulgences are sold left and right by lobbyists or
industry associations, and the decrees of the papacy evidence little but full
disconnection from the miserable everyday existence of the flock.
In fact, it is remarkable how easy such comparisons become the more details of 217

the political economy of information one learns. But [pg72] allegories of the
Reformation and clerical power can lead easily to cynicism, which should perhaps
be read in this instance as evidence of political disenfranchisement, rather than a
lapse in faith. And yet the usable pasts of these reformation-minded modern
monks and priests crop up regularly not only because they provide relief from
technical chatter but because they explain a political, technical, legal situation
that does not have ready-to-narrate stories. Geeks live in a world finely controlled
by corporate organizations, mass media, marketing departments, and lobbyists,
yet they share a profound distrust of government regulationthey need another set
of just-so stories to make sense of it. The standard unusable pasts of the freeing of
markets, the inevitability of capitalism and democracy, or more lately, the
necessity of security dont do justice to their experience.
Allegories of Reformation are stories that make sense of the political economy of 218

information. But they also have a more precise use: to make sense of the
distinction between power and control. Because geeks are ”closer to the machine”

Two Bits Christopher M. Kelty 58

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

than the rest of the laity, one might reasonably expect them to be the ones in
power. This is clearly not the case, however, and it is the frustrations and
mysteries by which states, corporations, and individuals manipulate technical
details in order to shift power that often earns the deepest ire of geeks. Control,
therefore, includes the detailed methods and actual practices by which
corporations, government agencies, or individuals attempt to manipulate people
(or enroll them to manipulate themselves and others) into making technical
choices that serve power, rather than rationality, liberty, elegance, or any other
geekly concern.
Consider the subject of evil. During my conversations with Sean Doyle in the late 219

1990s, as well as with a number of other geeks, the term evil was regularly used to
refer to some kind of design or technical problem. I asked Sean what he
meant.
SD: [Evil is] just a term I use to say that somethings wrong, but usually it means 220

something is wrong on purpose, there was agency behind it. I cant remember [the
example you gave] but I think it may have been some GE equipment, where it has
this default where it likes to send things in its own private format rather than in
DICOM [the radiology industry standard for digital images], if you give it a choice. I
dont know why they would have done something like that, [pg73] it doesnt solve any
backward compatibility problem, its really just an exclusionary sort of thing. So I
guess theres Evil like that. . . .
CK: one of the other examples that you had . . . was something with Internet 221

Explorer 3.0?
SD: Yes, oh yes, there are so many things with IE3 that are completely Evil. Like 222

heres one of them: in the http protocol theres a thing called the ”user agent field”
where a browser announces to the server who it is. If you look at IE, it announces
that it is Mozilla, which is the [code-name for] Netscape. Why did they do this?
Well because a lot of the web servers were sending out certain code that said, if it
were Mozilla they would serve the stuff down, [if not] they would send out
something very simple or stupid that would look very ugly. But it turned out that
[IE3, or maybe IE2] didnt support things when it first came out. Like, I dont think
they supported tables, and later on, their versions of Javascript were so different
that there was no way it was compatibleit just added tremendous complexity. It
was just a way of pissing on the Internet and saying theres no law that says we
have to follow these Internet standards. We can do as we damn well please, and
were so big that you cant stop us. So I view it as Evil in that way. I mean they
obviously have the talent to do it. They obviously have the resources to do it.
Theyve obviously done the work, its just that theyll have this little twitch where
they wont support a certain MIME type or theyll support some things differently
than others.
CK: But these kinds of incompatibility issues can happen as a result of a lack of 223

communication or coordination, which might involve agency at some level,
right?
SD: Well, I think of that more as Stupidity than Evil [laughter]. No, Evil is when 224

there is an opportunity to do something, and an understanding that there is an
opportunity to, and resources and all thatand then you do something just to spite
the other person. You know Im sure its like in messy divorces, where you would

Two Bits Christopher M. Kelty 59

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

rather sell the property at half its value rather than have it go to the other
person.
Sean relates control to power by casting the decisions of a large corporation in a 225

moral light. Although the specific allegory of the Protestant Reformation does not
operate here, the details do. Microsofts decision to manipulate Internet Explorers
behavior stems not from a lack of technical sophistication, nor is it an ”accident”
of [pg74] complexity, according to Sean, but is a deliberate assertion of economic
and political power to corrupt the very details by which software has been created
and standardized and is expected to function. The clear goal of this activity is
conversion, the expansion of Microsofts flock through a detailed control of the
beliefs and practices (browsers and functionality) of computer users. Calling
Microsoft ”Evil” in this way has much the same meaning as questioning the
Catholic Churchs use of ritual, ceremony, literacy, and historythe details of the
”implementation” of religion, so to speak.
Or, in the terms of the Protestant Reformation itself, the practices of conversion as 226

well as those of liberation, learning, and self-help are central to the story. It is not
an accident that many historians of the Reformation themselves draw attention to
the promises of liberation through reformation ”information technologies.”67
Colloquial (and often academic) assertions that the printing press was
technologically necessary or sufficient to bring the Reformation about appear
constantly as a parable of this new age of information. Often the printing press is
the only ”technological” cause considered, but scholars of the real, historical
Reformation also pay close attention to the fact of widespread literacy, to
circulating devotional pamphlets, catechisms, and theological tracts, as well as to
the range of transformations of political and legal relationships that occurred
simultaneously with the introduction of the printing press.
ľ 227

One final way to demonstrate the effectiveness of these allegoriestheir ability to 228

work on the minds of geeksis to demonstrate how they have started to work on
me, to demonstrate how much of a geek I have becomea form of participant
allegorization, so to speak. The longer one considers the problems that make up
the contemporary political economy of information technology that geeks inhabit,
the more likely it is that these allegories will start to present themselves almost
automaticallyas, for instance, when I read The Story of A, a delightful book having
nothing to do with geeks, a book about literacy in early America. The author,
Patricia Crain, explains that the Christs cross (see above) was often used in the
creation of hornbooks or battledores, small leather-backed paddles inscribed with
the Lords Prayer and the alphabet, which were used [pg75] to teach children their
ABCs from as early as the fifteenth century until as late as the nineteenth: ”In its
early print manifestations, the pedagogical alphabet is headed not by the letter A
but by the Christs Cross: Because the alphabet is associated with Catholic
Iconography, as if the two sets of signs were really part of one semiological

67See, for example, Matheson, The Imaginative World of the Reformation. There is rigorous debate
about the relation of print, religion, and capitalism: one locus classicus is Eisensteins The Printing
Press as an Agent of Change, which was inspired by McLuhan, The Gutenberg Galaxy. See also Ian
Green, Print and Protestantism in Early Modern England and The Christians ABCs; Chadwick, The
Early Reformation on the Continent, chaps. 1-3.

Two Bits Christopher M. Kelty 60

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

system, one of the struggles of the Reformation would be to wrest the alphabet
away from the Catholic Church.”68

Here, allegorically, the Catholic Churchs control of the alphabet (like Microsofts 229

programming of Internet Explorer to blur public standards for the Internet) is not
simply ideological; it is not just a fantasy of origin or ownership planted in the
fallow mental soil of believers, but in fact a very specific, very nonsubjective, and
very media-specific normative tool of control. Crain explains further: ”Today
represents the imprimatur of the Catholic Church on copyright pages. In its
connection to the early modern alphabet as well, this cross carries an imprimatur
or licensing effect. This let it be printed, however, is directed not to the artisan
printer but to the mind and memory of the young scholar. . . . Like modern
copyright, the cross authorizes the existence of the alphabet and associates the
letters with sacred authorship, especially since another long-lived function of in
liturgical missals is to mark gospel passages. The symbol both conveys
information and generates ritual behavior.”69

The ľ today carries as much if not more power, both ideologically and legally, as 230

the cross of the Catholic church. It is the very symbol of authorship, even though
in origin and in function it governs only ownership and rights. Magical thinking
about copyright abounds, but one important function of the symbol ľ, if not its
legal implications, is to achieve the same thing as the Christs cross: to associate in
the mind of the reader the ownership of a particular text (or in this case, piece of
software) with a particular organization or person. Furthermore, even though the
symbol is an artifact of national and international law, it creates an association not
between a text and the state or government, but between a text and particular
corporations, publishers, printers, or authors.
Like the Christs cross, the copyright symbol carries both a licensing effect 231

(exclusive, limited or nonexclusive) and an imprimatur on the minds of people: ”let
it be imprinted in memory” that this is the work of such and such an author and
that this is the property of such and such a corporation.
Without the allegory of the Protestant Reformation, the only available narrative for 232

such evilwhether it be the behavior of Microsoft or of some other corporationis that
corporations are ”competing in the marketplace according to the rules of
capitalism” and thus when geeks decry such behavior, its just sour grapes. If
corporations are not breaking any laws, why shouldnt they be allowed to achieve
control in this manner? In this narrative there is no room for a moral evaluation of
competitionanything goes, it would seem. Claiming for Microsoft that it is simply
playing by the rules of capitalism puts everyone else into either the competitor
box or the noncompetitor box (the state and other noncompetitive organizations).
Using the allegory of the Protestant Reformation, on the other hand, gives geeks a
way to make sense of an unequal distribution among competing powersbetween
large and small corporations, and between market power and the details of control.
It provides an alternate imagination against which to judge the technically and
legally specific actions that corporations and individuals take, and to imagine
forms of justified action in return.
Without such an allegory, geeks who oppose Microsoft are generally forced into 233

68Crain, The Story of A, 16-17.
69Ibid., 20-21.

Two Bits Christopher M. Kelty 61

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

the position of being anticapitalist or are forced to adopt the stance that all
standards should be publicly generated and controlled, a position few wish to take.
Indeed, many geeks would prefer a different kind of imaginary altogethera
recursive public, perhaps. Instead of an infrastructure subject to unequal
distributions of power and shot through with ”evil” distortions of technical control,
there is, as geeks see it, the possibility for a ”self-leveling” level playing field, an
autotelic system of rules, both technical and legal, by which all participants are
expected to compete equally. Even if it remains an imaginary, the allegory of the
Protestant Reformation makes sense of (gives order to) the political economy of
the contemporary information-technology world and allows geeks to conceive of
their interests and actions according to a narrative of reformation, rather than one
of revolution or submission. In the Reformation the interpretation or truth of
Christian teaching was not primarily in question: it was not a doctrinal revolution,
but a bureaucratic one. Likewise, geeks do not question the rightness of networks,
software, or protocols and standards, nor are they against capitalism or
intellectual property, but they do wish to maintain a space for critique and the
moral evaluation of contemporary capitalism and competition.

Polymaths and Transhumanists 234

Usable pasts articulate the conjunction of ”operating systems and social systems,” 235

giving narrative form to imaginations of moral and technical order. To say that
there are no ready-to-narrate stories about contemporary political economy
means only that the standard colloquial explanations of the state of the modern
world do not do justice to the kinds of moral and technical imaginations of order
that geeks possess by virtue of their practices. Geeks live in, and build, one kind of
worlda world of software, networks, and infrastructuresbut they are often
confronted with stories and explanations that simply dont match up with their
experience, whether in newspapers and on television, or among nongeek friends.
To many geeks, proselytization seems an obvious route: why not help friends and
neighbors to understand the hidden world of networks and software, since, they
are quite certain, it will come to structure their lives as well?
Geeks gather through the Internet and, like a self-governing people, possess 236

nascent ideas of independence, contract, and constitution by which they wish to
govern themselves and resist governance by others.70 Conventional political
philosophies like libertarianism, anarchism, and (neo)liberalism only partially
capture these social imaginaries precisely because they make no reference to the
operating systems, software, and networks within which geeks live, work, and in
turn seek to build and extend.
Geeks live in specific ways in time and space. They are not just users of 237

technology, or a ”network society,” or a ”virtual community,” but embodied and
imagining actors whose affinity for one another is enabled in new ways by the
tools and technologies they have such deep affective connections to. They live in
this-network-here, a historically unique form grounded in particular social, moral,
national, and historical specificities which nonetheless relates to generalities such
as progress, technology, infrastructure, and liberty. Geeks are by no means of one
70At a populist level, this was captured by John Perry Barlows ”Declaration of Independence of the
Internet,” ⌜ http://homes.eff.org/ barlow/Declaration-Final.html ⌟ .

Two Bits Christopher M. Kelty 62

http://homes.eff.org/~barlow/Declaration-Final.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

mind about such generalities though, and they often have highly developed
means of thinking about them.
Foucaults article ”What Is Enlightenment?” captures part of this problematic. For 238

Foucault, Kants understanding of modernity was an attempt to rethink the
relationship between the passage of historical time and the subjective relationship
that individuals have toward it.

Thinking back on Kants text, I wonder whether we may not envisage 239

modernity as an attitude rather than as a period of history. And by ”attitude,” I
mean a mode of relating to contemporary reality; a voluntary choice made by
certain people; in the end, a way of thinking and feeling; a way, too, of acting
and behaving that at one and the same time marks a relation of belonging and
presents itself as a task. No doubt a bit like what the Greeks called an ethos.
And consequently, rather than seeking to distinguish the ”modern era” from
the ”premodern” or ”postmodern,” I think it would be more useful to try to find
out how the attitude of modernity, ever since its formation, has found itself
struggling with attitudes of ”countermodernity.”71

In thinking through how geeks understand the present, the past, and the future, I 240

pose the question of whether they are ”modern” in this sense. Foucault makes use
of Baudelaire as his foil for explaining in what the attitude of modernity consists:
”For [Baudelaire,] being modern . . . consists in recapturing something eternal that
is not beyond the present, or behind it, but within it.”72 He suggests that
Baudelaires understanding of modernity is ”an attitude that makes it possible to
grasp the heroic aspect of the present moment . . . the will to heroize the
present.”73 Heroic here means something like redescribing the seemingly fleeting
events of the present in terms that conjure forth the universal or eternal character
that animates them. In Foucaults channeling of Baudelaire such an attitude is
incommensurable with one that sees in the passage of the present into the future
some version of autonomous progress (whether absolute spirit or decadent
degeneration), and the tag he uses for this is ”you have no right to despise the
present.” To be modern is to confront the present as a problem that can be
transformed by human action, not as an inevitable outcome of processes beyond
the scope of individual or collective human control, that is, ”attitudes of
counter-modernity.” When geeks tell stories of the past to make sense of the
future, it is often precisely in order to ”heroize” the present in this sensebut not all
geeks do so. Within the spectrum from polymath to transhumanist, there are
attitudes of both modernity and countermodernity.
The questions I raise here are also those of politics in a classical sense: Are the 241

geeks I discuss bound by an attitude toward the present that concerns such things
as the relationship of the public to the private and the social (à la Hannah Arendt),
the relationship [pg79] of economics to liberty (à la John Stuart Mill and John Dewey),
or the possibilities for rational organization of society through the application of
scientific knowledge (à la Friedrich Hayek or Foucault)? Are geeks ”enlightened”?
Are they Enlightenment rationalists? What might this mean so long after the
Enlightenment and its vigorous, wide-ranging critiques? How is their
enlightenment related to the technical and infrastructural commitments they have
71Foucault, ”What Is Enlightenment,” 309-10.
72Ibid., 310.
73Ibid., 310.

Two Bits Christopher M. Kelty 63

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

made? Or, to put it differently, what makes enlightenment newly necessary now,
in the milieu of the Internet, Free Software, and recursive publics? What kinds of
relationships become apparent when one asks how these geeks relate their own
conscious appreciation of the history and politics of their time to their everyday
practices and commitments? Do geeks despise the present?
Polymaths and transhumanists speak differently about concepts like technology, 242

infrastructure, networks, and software, and they have different ideas about their
temporality and relationship to progress and liberty. Some geeks see technology
as one kind of intervention into a constituted field of organizations, money,
politics, and people. Some see it as an autonomous force made up of humans and
impersonal forces of evolution and complexity. Different geeks speak about the
role of technology and its relationship to the present and future in different ways,
and how they understand this relationship is related to their own rich
understandings of the complex technical and political environment they live and
work in.
Polymaths Polymathy is ”avowed dilettantism,” not extreme intelligence. It 243

results from a curiosity that seems to grip a remarkable number of people who
spend their time on the Internet and from the basic necessity of being able to
evaluate and incorporate sometimes quite disparate fields of knowledge in order
to build workable software. Polymathy inevitably emerges in the context of large
software and networking projects; it is a creature of constraints, a process
bootstrapped by the complex sediment of technologies, businesses, people,
money, and plans. It might also be posed in the negative: bad software design is
often the result of not enough avowed dilettantism. Polymaths must know a very
large and wide range of things in order to intervene in an existing distribution of
machines, people, practices, and places. They must have a detailed sense of the
present, and the project of the present, in order to imagine how the future might
be different.
My favorite polymath is Sean Doyle. Sean built the first versions of a piece of 244

software that forms the centerpiece of the radiological-image-management
company Amicas. In order to build it Sean learned the following: Java, to program
it; the mathematics of wavelets, to encode the images; the workflow of hospital
radiologists and the manner in which they make diagnoses from images, to make
the interface usable; several incompatible databases and the SQL database
language, to build the archive and repository; and manual after manual of
technical standards, the largest and most frightening of which was the Digital
Imaging and Communication (DICOM) standard for radiological images. Sean also
read Science and Nature regularly, looking for inspiration about interface design;
he read books and articles about imaging very small things (mosquito knees), very
large things (galaxies and interstellar dust), very old things (fossils), and very
pretty things (butterfly-wing patterns as a function of developmental pathways).
Sean also introduced me to Tibetan food, to Jan Svankmeyer films, to Open Source
Software, to cladistics and paleoherpetology, to Disneys scorched-earth policy with
respect to culture, and to many other awesome things.
Sean is clearly an unusual character, but not that unusual. Over the years I have 245

met many people with a similar range and depth of knowledge (though rarely with
Seans humility, which does set him apart). Polymathy is an occupational hazard
for geeks. There is no sense in which a good programmer, software architect, or

Two Bits Christopher M. Kelty 64

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

information architect simply specializes in code. Specialization is seen not as an
end in itself, but rather as a kind of technical prerequisite before other workthe
real workcan be accomplished. The real work is the design, the process of
inserting usable software into a completely unfamiliar amalgamation of people,
organizations, machines, and practices. Design is hard work, whereas the
technical stufflike choosing the right language or adhering to a standard or finding
a ready-made piece of code to plug in somewhereis not.
It is possible for Internet geeks and software architects to think this way in part 246

due to the fact that so many of the technical issues they face are both extremely
well defined and very easy to address with a quick search and download. It is easy
to be an avowed dilettante in the age of mailing lists, newsgroups, and online
scientific publishing. I myself have learned whole swaths of technical practices in
this manner, but I have designed no technology of note. [pg81]

Seans partner in Amicas, Adrian Gropper, also fits the bill of polymath, though he 247

is not a programmer. Adrian, a physician and a graduate of MITs engineering
program, might be called a ”high-functioning polymath.” He scans the horizon of
technical and scientific accomplishments, looking for ways to incorporate them
into his vision of medical technology qua intervention. Sean mockingly calls these
”delusions,” but both agree that Amicas would be nowhere without them. Adrian
and Sean exemplify how the meanings of technology, intervention, design, and
infrastructure are understood by polymaths as a particular form of pragmatic
intervention, a progress achieved through deliberate, piecemeal re-formation of
existing systems. As Adrian comments:

I firmly believe that in the long run the only way you can save money and 248

improve healthcare is to add technology. I believe that more strongly than I
believe, for instance, that if people invent better pesticides theyll be able to
grow more rice, and its for the universal good of the world to be able to
support more people. I have some doubt as to whether I support people doing
genetic engineering of crops and pesticides as being ”to the good.” But I do,
however, believe that healthcare is different in that in the long run you can
impact both the cost and quality of healthcare by adding technology. And you
can call that a religious belief if you want, its not rational. But I guess what Im
willing to say is that traditional healthcare thats not technology-based has
pretty much run out of steam.74

In this conversation, the ”technological” is restricted to the novel things that can 249

make healthcare less costly (i.e., cost-reducing, not cost-cutting), ease suffering,
or extend life. Certain kinds of technological intervention are either superfluous or
even pointless, and Adrian cant quite identify this ”class”it isnt ”technology” in
general, but it includes some kinds of things that are technological. What is more
important is that technology does not solve anything by itself; it does not obviate
the political problems of healthcare rationing: ”Now, however, you get this other
problem, which is that the way that healthcare is rationed is through the fear of
pain, financial pain to some extent, but physical pain; so if you have a technology
that, for instance, makes it relatively painless to fix . . . I guess, bluntly put, its
cheaper to let people die in most cases, and thats just undeniable. So what I find
interesting in all of this, is that most people who are dealing with the politics of

74Adrian Gropper, interview by author, 28 November 1998.

Two Bits Christopher M. Kelty 65

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

healthcare [pg82] resource management dont want to have this discussion, nobody
wants to talk about this, the doctors dont want to talk about it, because its too
depressing to talk about the value of. . . . And they dont really have a mandate to
talk about technology.”75

Adrians self-defined role in this arena is as a nonpracticing physician who is also an 250

engineer and an entrepreneurhence, his polymathy has emerged from his
attempts to translate between doctors, engineers, and businesspeople. His goal is
twofold: first, create technologies that save money and improve the allocation of
healthcare (and the great dream of telemedicine concerns precisely this goal: the
reallocation of the most valuable asset, individuals and their expertise); second, to
raise the level of discussion in the business-cum-medical world about the role of
technology in managing healthcare resources. Polymathy is essential, since
Adrians twofold mission requires understanding the language and lives of at least
three distinct groups who work elbow-to-elbow in healthcare: engineers and
software architects; doctors and nurses; and businessmen.
Technology has two different meanings according to Adrians two goals: in the first 251

case technology refers to the intervention by means of new technologies (from
software, to materials, to electronics, to pharmaceuticals) in specific healthcare
situations wherein high costs or limited access to care can be affected. Sometimes
technology is allocated, sometimes it does the allocating. Adrians goal is to match
his knowledge of state-of-the-art technologyin particular, Internet technologywith
a specific healthcare situation and thereby effect a reorganization of practices,
people, tools, and information. The tool Amicas created was distinguished by its
clever use of compression, Internet standards, and cheap storage media to
compete with much larger, more expensive, much more entrenched ”legacy” and
”turnkey” systems. Whether Amicas invented something ”new” is less interesting
than the nature of this intervention into an existing milieu. This intervention is
what Adrian calls ”technology.” For Amicas, the relevant technologythe important
interventionwas the Internet, which Amicas conceived as a tool for changing the
nature of the way healthcare was organized. Their goal was to replace the
infrastructure of the hospital radiology department (and potentially the other
departments as well) with the Internet. Amicas was able to confront and reform the
practices of powerful, entrenched entities, from the administration of large [pg83]

hospitals to their corporate bedfellows, like HBOC, Agfa, Siemens, and GE.
With regard to raising the level of discussion, however, technology refers to a kind 252

of political-rhetorical argument: technology does not save the world (nor does it
destroy it); it only saves livesand it does this only when one makes particular
decisions about its allocation. Or, put differently, the means is technology, but the
ends are still where the action is at. Thus, the hype surrounding information
technology in healthcare is horrifying to Adrian: promises precede technologies,
and the promises suggest that the means can replace the ends. Large
corporations that promise ”technology,” but offer no real hard interventions
(Adrians first meaning of technology) that can be concretely demonstrated to
reduce costs or improve allocation are simply a waste of resources. Such
companies are doubly frustrating because they use ”technology” as a blinder that
allows people to not think about the hard problems (the ends) of allocation, equity,

75Adrian Gropper, interview by author, 28 November 1998.

Two Bits Christopher M. Kelty 66

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

management, and organization; that is, they treat ”technology” (the means) as if
it were a solution as such.
Adrian routinely analyzes the rhetorical and practical uses of technology in 253

healthcare with this kind of subtlety; clearly, such subtlety of thought is rare, and
it sets Adrian apart as someone who understands that intervention into, and
reform of, modern organizations and styles of thought has to happen through
reformationthrough the clever use of technology by people who understand it
intimatelynot through revolution. Reformation through technical innovation is
opposed here to control through the consolidation of money and power.
In my observations, Adrian always made a point of making the technologythe 254

software tools and picture-archiving systemeasily accessible, easily demonstrable
to customers. When talking to hospital purchasers, he often said something like ”I
can show you the software, and I can tell you the price, and I can demonstrate the
problem it will solve.” In contrast, however, an array of enormous corporations
with salesmen and women (usually called consultants) were probably saying
something more like ”Your hospital needs more technology, our corporation is big
and stablegive us this much money and we will solve your problem.” For Adrian,
the decision to ”hold hands,” as he put it, with the comfortably large corporation
was irrational if the hospital could instead purchase a specific technology that did
a specific thing, for a real price. [pg84]

Adrians reflections on technology are also reflections on the nature of progress. 255

Progress is limited intervention structured by goals that are not set by the
technology itself, even if entrepreneurial activity is specifically focused on finding
new uses and new ideas for new technologies. But discussions about healthcare
allocationwhich Adrian sees as a problem amenable to certain kinds of technical
solutionsare instead structured as if technology did not matter to the nature of the
ends. It is a point Adrian resists: ”I firmly believe that in the long run the only way
you can save money and improve healthcare is to add technology.”
Sean is similarly frustrated by the homogenization of the concept of technology, 256

especially when it is used to suggest, for instance, that hospitals ”lag behind”
other industries with regard to computerization, a complaint usually made in order
to either instigate investment or explain failures. Sean first objects to such a
homogenous notion of ”technological.”

I actually have no idea what that means, that its lagging behind. Because 257

certainly in many ways in terms of image processing or some very high-tech
things its probably way ahead. And if that means whats on peoples desktops,
ever since 19-maybe-84 or so when I arrived at MGH [Massachusetts General
Hospital] theres been a computer on pretty much everyones desktop. . . . It
seems like most hospitals that I have been to seem to have a serious
commitment to networks and automation, etcetera. . . . I dont know about a
lot of manufacturing industriesthey might have computer consoles there, but
its a different sort of animal. Farms probably lag really far behind, I wont even
talk about amusement parks. In some sense, hospitals are very complicated
little communities, and so to say that this thing as a whole is lagging behind
doesnt make much sense.76

He also objects to the notion that such a lag results in failures caused by 258

76Sean Doyle, interview by author, 30 March 1999.

Two Bits Christopher M. Kelty 67

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

technology, rather than by something like incompetence or bad management. In
fact, it might be fair to say that, for the polymath, sometimes technology actually
dissolves. Its boundaries are not easily drawn, nor are its uses, nor are its
purported ”unintended consequences.” On one side there are rules, regulations,
protocols, standards, norms, and forms of behavior; on the other there are
organizational structures, business plans and logic, human skills, and other
machines. This complex milieu requires reform from within: it cannot be replaced
wholesale; it cannot leap-frog [pg85] other industries in terms of computerization, as
intervention is always local and strategic; and it involves a more complex
relationship to the project of the present than simply ”lagging behind” or ”leaping
ahead.”
Polymathyinasmuch as it is a polymathy of the lived experience of the necessity 259

for multiple expertise to suit a situationturns people into pragmatists. Technology
is never simply a solution to a problem, but always part of a series of factors. The
polymath, unlike the technophobe, can see when technology matters and when it
doesnt. The polymath has a very this-worldly approach to technology: there is
neither mystery nor promise, only human ingenuity and error. In this manner,
polymaths might better be described as Feyerabendians than as pragmatists (and,
indeed, Sean turned out to be an avid reader of Feyerabend). The polymath feels
there is no single method by which technology works its magic: it is highly
dependent on rules, on patterned actions, and on the observation of contingent
and contextual factors. Intervention into this already instituted field of people,
machines, tools, desires, and beliefs requires a kind of scientific-technical genius,
but it is hardly single, or even autonomous. This version of pragmatism is, as
Feyerabend sometimes refers to it, simply a kind of awareness: of standards, of
rules, of history, of possibility.77 The polymath thus does not allow himself or
herself to despise the present, but insists on both reflecting on it and intervening
in it.
Sean and Adrian are avowedly scientific and technical people; like Feyerabend, 260

they assume that their interlocutors believe in good science and the benefits of
progress. They have little patience for Luddites, for new-agers, for religious
intolerance, or for any other non-Enlightenment-derived attitude. They do not
despise the present, because they have a well-developed sense of how provisional
the conventions of modern technology and business are. Very little is sacred, and
rules, when they exist, are fragile. Breaking them pointlessly is immodest, but
innovation is often itself seen as a way of transforming a set of accepted rules or
practices to other ends. Progress is limited intervention.78

How ironic, and troubling, then, to realize that Seans and Adrians company would 261

eventually become the kind of thing they started Amicas in order to reform.
Outside of the limited intervention, certain kinds of momentum seem irresistible:
the demand for investment and funding rounds, the need for ”professional
management,” [pg86] and the inertia of already streamlined and highly conservative
77Feyerabend, Against Method, 215-25.
78One of the ways Adrian discusses innovation is via the argument of the Harvard Business School
professor Clayton Christensens The Innovators Dilemma. It describes ”sustaining vs. disruptive”
technologies as less an issue of how technologies work or what they are made of, and more an issue
of how their success and performance are measured. See Adrian Gropper, ”The Internet as a
Disruptive Technology,” Imaging Economics, December 2001,
⌜ http://www.imagingeconomics.com/library/200112-10.asp ⌟ (accessed 19 September 2006).

Two Bits Christopher M. Kelty 68

http://www.imagingeconomics.com/library/200112-10.asp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

purchasing practices in healthcare. For Sean and Adrian, Amicas became a failure
in its success. Nonetheless, they remain resolutely modern polymaths: they do not
despise the present. As described in Kants ”What Is Enlightenment?” the duty of
the citizen is broken into public and private: on the one hand, a duty to carry out
the responsibilities of an office; on the other, a duty to offer criticism where
criticism is due, as a ”scholar” in a reading public. Seans and Adrians endeavor, in
the form of a private start-up company, might well be understood as the
expression of the scholars duty to offer criticism, through the creation of a
particular kind of technical critique of an existing (and by their assessment)
ethically suspect healthcare system. The mixture of private capital, public
institutions, citizenship, and technology, however, is something Kant could not
have knownand Sean and Adrians technical pursuits must be understood as
something more: a kind of modern civic duty, in the service of liberty and
responding to the particularities of contemporary technical life.79

Transhumanists Polymathy is born of practical and pragmatic engagement with 262

specific situations, and in some ways is demanded by such exigencies. Opposite
polymathy, however, and leaning more toward a concern with the whole, with
totality and the universal, are attitudes that I refer to by the label transhumanism,
which concerns the mode of belief in the Timeline of Technical Progress.80

Transhumanism, the movement and the philosophy, focuses on the power of 263

technology to transcend the limitations of the human body as currently evolved.
Subscribers believebut already this is the wrong wordin the possibility of
downloading consciousness onto silicon, of cryobiological suspension, of the near
emergence of strong artificial intelligence and of various other forms of technical
augmentation of the human body for the purposes of achieving immortalityor at
least, much more life.81

Various groups could be reasonably included under this label. There are the most 264

ardent purveyors of the vision, the Extropians; there are a broad class of people
who call themselves transhumanists; there is a French-Canadian subclass, the
Raelians, who are more an alien-worshiping cult than a strictly scientific one and
are bitterly denounced by the first two; there are also the variety of cosmologists
and engineers who do not formally consider themselves [pg87] transhumanist, but
whose beliefs participate in some way or another: Stephen Hawking, Frank Tipler
and John Barrow (famous for their anthropic cosmological principle), Hans Moravic,
Ray Kurzweil, Danny Hillis, and down the line through those who embrace the
cognitive sciences, the philosophy of artificial intelligence, the philosophy of mind,
the philosophy of science, and so forth.
Historically speaking, the line of descent is diffuse. Teilhard de Chardin is broadly 265

influential, sometimes acknowledged, sometimes not (depending on the amount
of mysticism allowed). A more generally recognized starting point is Julian Huxleys

79On kinds of civic duty, see Fortun and Fortun, ”Scientific Imaginaries and Ethical Plateaus in
Contemporary U.S. Toxicology.”
80There is, in fact, a very specific group of people called transhumanists, about whom I will say very
little. I invoke the label here because I think certain aspects of transhumanism are present across
the spectrum of engineers, scientists, and geeks.
81See the World Transhumanist Association, ⌜ http://transhumanism.org/ ⌟ (accessed 1 December
2003) or the Extropy Institute, ⌜ http://www.extropy.org/ ⌟ (accessed 1 December 2003). See also
Doyle, Wetwares, and Battaglia, ”For Those Who Are Not Afraid of the Future,” for a sidelong glance.

Two Bits Christopher M. Kelty 69

http://transhumanism.org/
http://www.extropy.org/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

article ”Transhumanism” in New Bottles for New Wine.82 Huxleys transhumanism,
like Teilhards, has a strange whiff of Nietzsche about it, though it tends much more
strongly in the direction of the evolutionary emergence of the superman than in
the more properly moral sense Nietzsche gave it. After Huxley, the notion of
transhumanism is too easily identified with eugenics, and it has become one of a
series of midcentury subcultural currents which finds expression largely in small,
non-mainstream places, from the libertarians to Esalen.83

For many observers, transhumanists are a lunatic fringe, bounded on either side 266

by alien abductees and Ayn Rand-spouting objectivists. However, like so much of
the fringe, it merely represents in crystalline form attitudes that seem to permeate
discussions more broadly, whether as beliefs professed or as beliefs attributed.
Transhumanism, while probably anathema to most people, actually reveals a very
specific attitude toward technical innovation, technical intervention, and political
life that is widespread among technically adept individuals. It is a belief that has
everything to do also with the timeline of progress and the role of technology in
it.
The transhumanist understanding of technological progress can best be 267

understood through the sometimes serious and sometimes playful concept of the
”singularity,” popularized by the science-fiction writer and mathematician Vernor
Vinge.84 The ”singularity” is the point at which the speed of technical progress is
faster than human comprehension of that progress (and, by implication, than
human control over the course). It is a kind of cave-man parable, perhaps most
beautifully rendered by Stanley Kubriks film 2001: A Space Odyssey (in particular,
in the jump-cut early in the film that turns a hurled bone into a spinning space
station, recapitulating the remarkable adventure of technology in two short
seconds of an otherwise seemingly endless film).

268

82Huxley, New Bottles for New Wine, 13-18.
83The computer scientist Bill Joy wrote a long piece in Wired warning of the outcomes of research
conducted without ethical safeguards and the dangers of eugenics in the past, ”Why the Future
Doesnt Need Us,” Wired 8.4 [April 2000], ⌜ http://www.wired.com/wired/archive/8.04/joy.html ⌟ (accessed
27 June 2005).
84Vinge, ”The Coming Technological Singularity.”

Two Bits Christopher M. Kelty 70

http://en.wikipedia.org/wiki/Image:PPTCountdowntoSingularityLog.jpg
http://en.wikipedia.org/wiki/Image:PPTCountdowntoSingularityLog.jpg
http://en.wikipedia.org/wiki/Image:PPTCountdowntoSingularityLog.jpg
http://en.wikipedia.org/wiki/Image:PPTCountdowntoSingularityLog.jpg
http://en.wikipedia.org/wiki/Image:PPTCountdowntoSingularityLog.jpg
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

[* Illustration ľ 2005 Ray Kurzweil. Modifications ľ 2007 by C. Kelty. Original work
licensed under a Creative Commons Attribution License:
http://en.wikipedia.org/wiki/Image:PPTCountdowntoSingularityLog.jpg.]
In figure 1, on the left hand of the timeline, there is history, or rather, there is a 269

string of technological inventions (by which is implied that previous inventions set
the stage for later ones) spaced such that they produce a logarithmic curve that
can look very much like the doomsday population curves that started to appear in
the 1960s. Each invention is associated with a name or sometimes a nation.
Beyond the edge of the graph to the right side is the future: history changes here
from a series of inventions to an autonomous self-inventing technology associated
not with individual inventors but with a complex system of evolutionary adaptation
that includes technological as well as biological forms. It is a future in which
”humans” are no longer necessary to the progress of science and technology:
technology-as-extension-of-humans on the left, a Borg-like autonomous technical
intelligence on the right. The fundamental [pg89] operation in constructing the
”singularity” is the ”reasoned extrapolation” familiar to the ”hard science fiction”
writer or the futurist. One takes present technology as the initial condition for
future possibilities and extrapolates based on the (haphazardly handled) evidence
of past technical speed-up and change.
The position of the observer is always a bit uncertain, since he or she is naturally 270

projected at the highest (or lowest, depending on your orientation) point of this
curve, but one implication is clear: that the function or necessity of human
reflection on the present will disappear at the same time that humans do,
rendering enlightenment a quaint, but necessary, step on the route to
superrational, transhuman immortality.
Strangely, the notion that technical progress has acceleration seems to precede 271

any sense of what the velocity of progress might mean in the first instance;
technology is presumed to exist in absolute timefrom the Big Bang to the heat
death of the universeand not in any relationship with human life or consciousness.
The singularity is always described from the point of view of a god who is not God.
The fact of technological speed-up is generally treated as the most obvious thing
in the world, reinforced by the constant refrain in the media of the incredible pace
of change in contemporary society.
Why is the singularity important? Because it always implies that the absolute fact 272

of technical accelerationthis knowing glance into the futureshould order the kinds
of interventions that occur in the present. It is not mute waiting or eschatological
certainty that governs this attitude; rather, it is a mode of historical consciousness
that privileges the inevitability of technological progress over the inevitability of
human power. Only by looking into the future can one manipulate the present in a
way that will be widely meaningful, an attitude that could be expressed as
something like ”Those who do not learn from the future are condemned to suffer in
it.” Since it is a philosophy based on the success of human rationality and
ingenuity, rationality and ingenuity are still clearly essential in the future. They
lead, however, to a kind of posthuman state of constant technological becoming
which is inconceivable to the individual human mindand can only be
comprehended by a transcendental intelligence that is not God.
Such is a fair description of some strands of transhumanism, and the reason I 273

Two Bits Christopher M. Kelty 71

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

highlight them is to characterize the kinds of attitudes [pg90] toward
technology-as-intervention and the ideas of moral and technical order that geeks
can evince. On the far side of polymathy, geeks are too close to the machine to
see a big picture or to think about imponderable philosophical issues; on the
transhuman side, by contrast, one is constantly reassessing the arcane details of
everyday technical change with respect to a vision of the wholea vision of the
evolution of technology and its relationship to the humans that (for the time being)
must create and attempt to channel it.
My favorite transhumanist is Eugen Leitl (who is, in fact, an authentic 274

transhumanist and has been vice-chair of the World Transhumanist Association).
Eugen is Russian-born, lives in Munich, and once worked in a cryobiology research
lab. He is well versed in chemistry, nanotechnology, artificial-intelligence (AI)
research, computational- and network-complexity research, artificial organs,
cryobiology, materials engineering, and science fiction. He writes, for
example,
If you consider AI handcoded by humans, yes. However, given considerable 275

computational resources (cubic meter of computronium), and using suitable start
population, you can coevolve machine intelligence on a time scale of much less
than a year. After it achieves about a human level, it is potentially capable of
entering an autofeedback loop. Given that even autoassembly-grade
computronium is capable of running a human-grade intellect in a volume ranging
from a sugar cube to an orange at a speed ranging from
104...106itiseasytoseethattheautofeedbackloophasexplosivedynamics .

(I hope above is intelligible, Ive been exposed to weird memes for far too 276

long).85

Eugen is also a polymath (and an autodidact to boot), but in the conventional 277

sense. Eugens polymathy is an avocational necessity: transhumanists need to
keep up with all advances in technology and science in order to better assess what
kinds of human-augmenting or human-obsolescing technologies are out there. It is
not for work in this world that the transhumanist expands his or her knowledge,
nor quite for the next, but for a ”this world” yet to arrive.
Eugen and I were introduced during the Napster debates of 2001, which seemed 278

at the time to be a knock-down, drag-out conflagration, but Eugen has been
involved in so many online flame wars that he probably experienced it as a mere
blip in an otherwise constant struggle with less-evolved intelligences like mine.
Nonetheless, [pg91] it was one of the more clarifying examples of how geeks think,
and think differently, about technology, infrastructure, networks, and software.
Transhumanism has no truck with old-fashioned humanism.

> >From: Ramu Narayan . . . 279

> >I dont like the
> >notion of technology as an unstoppable force with a will of its own that
> >has nothing to do with the needs of real people.

[Eugen Leitl:] Emergent large-scale behaviour is nothing new. How do you 280

intend to control individual behaviour of a large population of only partially

85Eugen Leitl, e-mail to Silk-list mailing list, 16 May 2000,
⌜ http://groups.yahoo.com/group/silk-list/message/2410 ⌟ .

Two Bits Christopher M. Kelty 72

http://groups.yahoo.com/group/silk-list/message/2410
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

rational agents? They dont come with too many convenient
behaviour-modifying hooks (pheromones as in social insects, but notice
menarche-synch in females sharing quarters), and for a good reason. The few
hooks we have (mob, war, politics, religion) have been notoriously abused,
already. Analogous to apoptosis, metaindividuals may function using
processes deletorious[sic] to its components (us).86

Eugens understanding of what ”technological progress” means is sufficiently 281

complex to confound most of his interlocutors. For one surprising thing, it is not
exactly inevitable. The manner in which Leitl argues with people is usually a kind
of machine-gun prattle of coevolutionary, game-theoretic, cryptographic sorites.
Eugen piles on the scientific and transhumanist reasoning, and his interlocutors
slowly peel away from the discussion. But it isnt craziness, hype, or half-digested
popular scienceEugen generally knows his stuffit just fits together in a way that
almost no one else can quite grasp. Eugen sees the large-scale adoption and
proliferation of technologies (particularly self-replicating molecular devices and
evolutionary software algorithms) as a danger that transcends all possibility of
control at the individual or state level. Billions of individual decisions do not
”average” into one will, but instead produce complex dynamics and hang
perilously on initial conditions. In discussing the possibility of the singularity,
Eugen suggests, ”It could literally be a science-fair project [that causes the
singularity].” If Francis Bacons understanding of the relation between Man and
Nature was that of master and possessor, Eugens is its radicalization: Man is a
powerful but ultimately arbitrary force in the progress of Life-Intelligence. Man is
fully incorporated into Nature in this story, [pg92] so much so that he dissolves into
it. Eugen writes, when ”life crosses over into this petri dish which is getting
readied, things will become a lot more lively. . . . I hope well make it.”
For Eugen, the arguments about technology that the polymaths involve 282

themselves in couldnt be more parochial. They are important only insofar as they
will set the ”initial conditions” for the grand coevolutionary adventure of
technology ahead of us. For the transhumanist, technology does not dissolve.
Instead, it is the solution within which humans are dissolved. Suffering, allocation,
decision makingall these are inessential to the ultimate outcome of technological
progress; they are worldly affairs, even if they concern life and death, and as such,
they can be either denounced or supported, but only with respect to fine-tuning
the acceleration toward the singularity. For the transhumanist, one cant fight the
inevitability of technical evolution, but one certainly can contribute to it. Technical
progress is thus both law-like and subject to intelligent manipulation; technical
progress is inevitable, but only because of the power of massively parallel human
curiosity.
Considered as one of the modes of thought present in this-worldly political 283

discussion, the transhumanist (like the polymath) turns technology into a
rhetorical argument. Technology is the more powerful political argument because
”it works.” It is pointless to argue ”about” technology, but not pointless to argue
through and with it. It is pointless to talk about whether stopping technology is
good or bad, because someone will simply build a technology that will invalidate
your argument.
86Eugen Leitl, e-mail to Silk-list mailing list, 7 August 2000,
⌜ http://groups.yahoo.com/group/silk-list/message/2932 ⌟ .

Two Bits Christopher M. Kelty 73

http://groups.yahoo.com/group/silk-list/message/2932
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

There is still a role for technical invention, but it is strongly distinguished from 284

political, legal, cultural, or social interventions. For most transhumanists, there is
no rhetoric here, no sophistry, just the pure truth of ”it works”: the pure,
undeniable, unstoppable, and undeconstructable reality of technology. For the
transhumanist attitude, the reality of ”working code” has a reality that other
assertions about the world do not. Extreme transhumanism replaces the life-world
with the world of the computer, where bad (ethically bad) ideas wont compile.
Less-staunch versions of transhumanism simply allow the confusion to operate
opportunistically: the progress of technology is unquestionable (omniscient), and
only its effects on humans are worth investigating.
The pure transhumanist, then, is a countermodern. The transhumanist despises 285

the present for its intolerably slow descent into the [pg93] future of immortality and
superhuman self-improvement, and fears destruction because of too much
turbulent (and ignorant) human resistance. One need have no individual
conception of the present, no reflection on or synthetic understanding of it. One
only need contribute to it correctly. One might even go so far as to suggest that
forms of reflection on the present that do not contribute to technical progress
endanger the very future of life-intelligence. Curiosity and technical innovation are
not historical features of Western science, but natural features of a human animal
that has created its own conditions for development. Thus, the transhumanists
historical consciousness consists largely of a timeline that makes ordered sense of
our place on the progress toward the Singularity.
The moral of the story is not just that technology determines history, however. 286

Transhumanism is a radically antihumanist position in which human agency or
willif it even existsis not ontologically distinct from the agency of machines and
animals and life itself. Even if it is necessary to organize, do things, make choices,
participate, build, hack, innovate, this does not amount to a belief in the ability of
humans to control their destiny, individually or collectively. In the end, the
transhumanist cannot quite pinpoint exactly what part of this story is
inevitableexcept perhaps the story itself. Technology does not develop without
millions of distributed humans contributing to it; humans cannot evolve without
the explicit human adoption of life-altering and identity-altering technologies;
evolution cannot become inevitable without the manipulation of environments and
struggles for fitness. As in the dilemma of Calvinism (wherein one cannot know if
one is saved by ones good works), the transhumanist must still create technology
according to the particular and parochial demands of the day, but this by no
means determines the eventual outcome of technological progress. It is a
sentiment well articulated by Adam Ferguson and highlighted repeatedly by
Friederich Hayek with respect to human society: ”the result of human action, but
not the execution of any human design.”87

Conclusion 287

To many observers, geeks exhibit a perhaps bewildering mix of liberalism, 288

libertarianism, anarchism, idealism, and pragmatism, [pg94] yet tend to fall firmly
into one or another constituted political category (liberal, conservative, socialist,

87Friedrich A. Hayek, Law, Legislation and Liberty, 1:20.

Two Bits Christopher M. Kelty 74

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

capitalist, neoliberal, etc.). By showing how geeks make use of the Protestant
Reformation as a usable past and how they occupy a spectrum of beliefs about
progress, liberty, and intervention, I hope to resist this urge to classify. Geeks are
an interesting case precisely because they are involved in the creation of new
things that change the meaning of our constituted political categories. Their
politics are mixed up and combined with the technical details of the Internet, Free
Software, and the various and sundry organizations, laws, people, and practices
that they deal with on a regular basis: operating systems and social systems. But
such mixing does not make Geeks merely technoliberals or technoconservatives.
Rather, it reveals how they think through the specific, historically unique situation
of the Internet to the general problems of knowledge and power, liberty and
enlightenment, progress and intervention.
Geeks are not a kind of person: geeks are geeks only insofar as they come 289

together in new, technically mediated forms of their own creation and in ways that
are not easy to identify (not language, not culture, not markets, not nations, not
telephone books or databases). While their affinity is very clearly constituted
through the Internet, the Internet is not the only reason for that affinity. It is this
collective affinity that I refer to as a recursive public. Because it is impossible to
understand this affinity by trying to identify particular types of people, it is
necessary to turn to historically specific sets of practices that form the substance
of their affinity. Free Software is an exemplary caseperhaps the exemplarof a
recursive public. To understand Free Software through its changing practices not
only gives better access to the life-world of the geek but also reveals how the
structure of a recursive public comes into being and manages to persist and
transform, how it can become a powerful form of life that extends its affinities
beyond technophile geeks into the realms of ordinary life.

Two Bits Christopher M. Kelty 75

https://twobits.net
https://kelty.org/

Part II free software 290

Two Bits Christopher M. Kelty 76

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

3.The Movement 291

Part II of Two Bits describes what Free Software is and where it came from, with 292

each of its five chapters detailing the historical narrative of a particular kind of
practice: creating a movement, sharing source code, conceptualizing openness or
open systems, writing copyright (and copyleft) licenses, and coordinating
collaborations. Taken together, the stories describe Free Software. The stories have
their endpoint (or starting point, genealogically speaking) in the years 1998-99,
when Free Software burst onto the scene: on the cover of Forbes magazine, as part
of the dotcom boom, and in the boardrooms of venture-capital firms and
corporations like IBM and Netscape. While the chapters that make up part II can be
read discretely to understand the practices that are the sine qua non of Free
Software, they can also be read continuously, as a meandering story of the history
of software and networks stretching from the late 1950s to the present.
Rather than define what makes Free Software free or Open Source open, Two Bits 293

treats the five practices as parts of a collective technical experimental system:
each component has its own history, development, and temporality, but they
come together as a package and emerge as a recognizable thing around 1998-99.
As with any experimental system, changing the components changes the
operation and outcomes of the whole. Free Software so conceived is a kind of
experimental system: its practices can be adopted, adapted, and modulated in
new contexts and new places, but it is one whose rules are collectively determined
and frequently modified. It is possible to see in each of the five practices where
choices about how to do Free Software reached, or surpassed, certain limits, but
nonetheless remained part of a system whose identity finally firmed up in the
period 1998-99 and after.
The first of these practicesthe making of Free Software into a movementis both the 294

most immediately obvious and the most difficult to grasp. By the term movement I
refer to the practice, among geeks, of arguing about and discussing the structure
and meaning of Free Software: what it consists of, what it is for, and whether or
not it is a movement. Some geeks call Free Software a movement, and some dont;
some talk about the ideology and goals of Free Software, and some dont; some
call it Free Software, while others call it Open Source. Amid all this argument,
however, Free Software geeks recognize that they are all doing the same thing:
the practice of creating a movement is the practice of talking about the meaning
and necessity of the other four practices. It was in 1998-99 that geeks came to
recognize that they were all doing the same thing and, almost immediately, to
argue about why.88

88For instance, Richard Stallman writes, ”The Free Software movement and the Open Source
movement are like two political camps within the free software community. Radical groups in the
1960s developed a reputation for factionalism: organizations split because of disagreements on
details of strategy, and then treated each other as enemies. Or at least, such is the [pg322] image
people have of them, whether or not it was true. The relationship between the Free Software
movement and the Open Source movement is just the opposite of that picture. We disagree on the
basic principles, but agree more or less on the practical recommendations. So we can and do work
together on many specific projects. We dont think of the Open Source movement as an enemy. The
enemy is proprietary software” (”Why Free Software Is Better than Open Source,” GNUs Not Unix!
⌜ http://www.gnu.org/philosophy/free-software-for-freedom.html ⌟ [accessed 9 July 2006]). By contrast, the
Open Source Initiative characterizes the relationship as follows: ”How is open source related to free
software? The Open Source Initiative is a marketing program for free software. Its a pitch for free

Two Bits Christopher M. Kelty 77

http://www.gnu.org/philosophy/free-software-for-freedom.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

One way to understand the movement is through the story of Netscape and the 295

Mozilla Web browser (now known as Firefox). Not only does this story provide some
context for the stories of geeks presented in part Iand I move here from direct
participant observation to historical and archival research on a phenomenon that
was occurring at roughly the same timebut it also contains all the elements
necessary to understand Free Software. It is full of discussion and argument about
the practices that make up Free Software: sharing source code, conceiving of
openness, writing licenses, and coordinating collaborations.

Forking Free Software, 1997-2000 296

Free Software forked in 1998 when the term Open Source suddenly appeared (a 297

term previously used only by the CIA to refer to unclassified sources of
intelligence). The two terms resulted in two separate kinds of narratives: the first,
regarding Free Software, stretched back into the 1980s, promoting software
freedom and resistance to proprietary software ”hoarding,” as Richard Stallman,
the head of the Free Software Foundation, refers to it; the second, regarding Open
Source, was associated with the dotcom boom and the evangelism of the
libertarian pro-business hacker Eric Raymond, who focused on the economic value
and cost savings that Open Source Software represented, including the pragmatic
(and polymathic) approach that governed the everyday use of Free Software in
some of the largest online start-ups (Amazon, Yahoo!, HotWired, and others all
”promoted” Free Software by using it to run their shops).
A critical point in the emergence of Free Software occurred in 1998-99: new 298

names, new narratives, but also new wealth and new stakes. ”Open Source” was
premised on dotcom promises of cost-cutting and ”disintermediation” and various
other schemes to make money on it (Cygnus Solutions, an early Free Software
company, playfully tagged itself as ”Making Free Software More Affordable”). VA
Linux, for instance, which sold personal-computer systems pre-installed with Open
Source operating systems, had the largest single initial public offering (IPO) of the
stock-market bubble, seeing a 700 percent share-price increase in one day. ”Free
Software” by contrast fanned kindling flames of worry over intellectual-property
expansionism and hitched itself to a nascent legal resistance to the 1998 Digital
Millennium Copyright Act and Sonny Bono Copyright Term Extension Act. Prior to
1998, Free Software referred either to the Free Software Foundation (and the
watchful, micromanaging eye of Stallman) or to one of thousands of different
commercial, avocational, or university-research projects, processes, licenses, and
ideologies that had a variety of names: sourceware, freeware, shareware, open
software, public domain software, and so on. The term Open Source, by contrast,
sought to encompass them all in one movement.
The event that precipitated this attempted semantic coup détat was the release of 299

the source code for Netscapes Communicator [pg100] Web browser. Its tough to

software because it works, not because its the only right thing to do. Were selling freedom on its
merits” (⌜ http://www.opensource.org/advocacy/faq.php ⌟ [accessed 9 July 2006]). There are a large number
of definitions of Free Software: canonical definitions include Richard Stallmans writings on the Free
Software Foundations Web site, www.fsf.org, including the ”Free Software Definition” and ”Confusing
Words and Phrases that Are Worth Avoiding.” From the Open Source side there is the ”Open Source
Definition” (⌜ http://www.opensource.org/licenses/ ⌟). Unaffiliated definitions can be found at
www.freedomdefined.org.

Two Bits Christopher M. Kelty 78

http://www.opensource.org/advocacy/faq.php
http://www.opensource.org/licenses/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

overestimate the importance of Netscape to the fortunes of Free Software.
Netscape is justly famous for its 1995 IPO and its decision to offer its core product,
Netscape Navigator, for free (meaning a compiled, binary version could be
downloaded and installed ”for zero dollars”). But Netscape is far more famous
among geeks for giving away something else, in 1998: the source code to
Netscape Communicator (née Navigator). Giving away the Navigator application
endeared Netscape to customers and confused investors. Giving away the
Communicator source code in 1998 endeared Netscape to geeks and confused
investors; it was ignored by customers.
Netscape is important from a number of perspectives. Businesspeople and 300

investors knew Netscape as the pet project of the successful businessman Jim
Clarke, who had founded the specialty computer manufacturer, Silicon Graphics
Incorporated (SGI). To computer scientists and engineers, especially in the small
university town of Champaign-Urbana, Illinois, Netscape was known as the highest
bidder for the WWW team at the National Center for Supercomputing Applications
(NCSA) at the University of Illinois. That teamMarc Andreessen, Rob McCool, Eric
Bina, Jon Mittelhauser, Aleks Totic, and Chris Houckhad created Mosaic, the first
and most fondly remembered ”graphical browser” for surfing the World Wide Web.
Netscape was thus first known as Mosaic Communications Corporation and
switched its name only after legal threats from NCSA and a rival firm, Spyglass.
Among geeks, Netscape was known as home to a number of Free Software hackers
and advocates, most notably Jamie Zawinski, who had rather flamboyantly broken
rank with the Free Software Foundation by forking the GNU EMACS code to create
what was first known as Lucid Emacs and later as XEmacs. Zawinski would go on
to lead the newly free Netscape browser project, now known as Mozilla.
Meanwhile, most regular computer users remember Netscape both as an emblem 301

of the dotcom booms venture-fed insanity and as yet another of Microsofts victims.
Although Netscape exploded onto the scene in 1995, offering a feature-rich
browser that was an alternative to the bare-bones Mosaic browser, it soon began
to lose ground to Microsoft, which relatively quickly adopted the strategy of giving
away its browser, Internet Explorer, as if it were part of the Windows operating
system; this was a practice that the U.S. Department of Justice eventually found to
be in violation of [pg101] antitrust laws and for which Microsoft was convicted, but
never punished.
The nature of Netscapes decision to release the source code differs based on 302

which perspective it is seen from. It could appear to be a business plan modeled
on the original success: give away your product and make money in the stock
market. It could appear to be a strategic, last-gasp effort to outcompete Microsoft.
It could also appear, and did appear to many geeks, to be an attempt to regain
some of that ”hacker-cred” it once had acquired by poaching the NCSA team, or
even to be an attempt to ”do the right thing” by making one of the worlds most
useful tools into Free Software. But why would Netscape reach such a conclusion?
By what reasoning would such a decision seem to be correct? The reasons for
Netscapes decision to ”free the source” recapitulate the five core practices of Free
Softwareand provided key momentum for the new movement.
Sharing Source Code Netscapes decision to share its source code could only 303

seem surprising in the context of the widespread practice of keeping source code
secret; secrecy was a practice followed largely in order to prevent competitors

Two Bits Christopher M. Kelty 79

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

from copying a program and competing with it, but also as a means to control the
market itself. The World Wide Web that Andreessens team at NCSA had cut their
teeth on was itself designed to be ”platform independent” and accessible by any
device on the network. In practice, however, this meant that someone needed to
create ”browsers” for each different computer or device. Mosaic was initially
created for UNIX, using the Motif library of the X11 Window Systemin short, a very
specific kind of access. Netscape, by contrast, prided itself on ”porting” Netscape
Navigator to nearly all available computer architectures. Indeed, by 1997, plans
were under way to create a version of the browserwritten in Java, the
programming language created by Sun Microsystems to ”write once, run
anywhere”that would be completely platform independent.
The Java-based Navigator (called Javagator, of course) created a problem, 304

however, with respect to the practice of keeping source code secret. Whenever a
program in Java was run, it created a set of ”bytecodes” that were easy to
reverse-engineer because they had to be transmitted from the server to the
machine that ran the program and were thus visible to anyone who might know
how and where to look. Netscape engineers flirted with the idea of deliberately
[pg102] obfuscating these bytecodes to deter competitors from copying them. How
can one compete, the logic goes, if anyone can copy your program and make their
own ersatz version?
Zawinski, among others, suggested that this was a bad idea: why not just share 305

the source code and get people to help make it better? As a longtime participant
in Free Software, Zawinski understood the potential benefits of receiving help from
a huge pool of potential contributors. He urged his peers at Netscape to see the
light. However, although he told them stories and showed them successes, he
could never make the case that this was an intelligent business plan, only that it
was an efficient software-engineering plan. From the perspective of management
and investors, such a move seemed tantamount to simply giving away the
intellectual property of the company itself.
Frank Hecker, a sales manager, made the link between the developers and 306

management: ”It was obvious to [developers] why it was important. It wasnt really
clear from a senior management level why releasing the source code could be of
use because nobody ever made the business case.”89 Hecker penned a document
called ”Netscape Source Code as Netscape Product” and circulated it to various
people, including Andreessen and Netscape CEO Jim Barksdale. As the title
suggests, the business case was that the source code could also be a product, and
in the context of Netscape, whose business model was ”give it away and make it
up on the stock market,” such a proposal seemed less insane than it otherwise
might have: ”When Netscape first made Navigator available for unrestricted
download over the Internet, many saw this as flying in the face of conventional
wisdom for the commercial software business, and questioned how we could
possibly make money giving our software away. Now of course this strategy is
seen in retrospect as a successful innovation that was a key factor in Netscapes
rapid growth, and rare is the software company today that does not emulate our
strategy in one way or another. Among other things, this provokes the following
question: What if we were to repeat this scenario, only this time with source

89Moody, Rebel Code, 193.

Two Bits Christopher M. Kelty 80

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

code?”90

Under the influence of Hecker, Zawinski, and CTO Eric Hahn (who had also written 307

various internal ”heresy documents” suggesting similar approaches), Netscape
eventually made the decision to share their source code with the outside world, a
decision that resulted in a famous January 1998 press release describing the aims
[pg103] and benefits of doing so. The decision, at that particular point in Netscapes
life, and in the midst of the dotcom boom, was certainly momentous, but it did not
lead either to a financial windfall or to a suddenly superior product.91

Conceptualizing Open Systems Releasing the source code was, in a way, an 308

attempt to regain the trust of the people who had first imagined the www. Tim
Berners-Lee, the initial architect of the www, was always adamant that the
protocol and all its implementations should be freely available (meaning either ”in
the public domain” or ”released as Free Software”). Indeed, Berners-Lee had done
just that with his first bare-bones implementations of the www, proudly declaring
them to be in the public domain.
Over the course of the 1990s, the ”browser wars” caused both Netscape and 309

Microsoft to stray far from this vision: each had implemented its own extensions
and ”features” to the browsers and servers, extensions not present in the protocol
that Berners-Lee had created or in the subsequent standards created by the World
Wide Web Consortium (W3C). Included in the implementations were various kinds
of ”evil” that could make browsers fail to work on certain operating systems or
with certain kinds of servers. The ”browser wars” repeated an open-systems battle
from the 1980s, one in which the attempt to standardize a network operating
system (UNIX) was stymied by competition and secrecy, at the same time that
consortiums devoted to ”openness” were forming in order to try to prevent the
spread of evil. Despite the fact that both Microsoft and Netscape were members of
the W3C, the noncompatibility of their browsers clearly represented the
manipulation of the standards process in the name of competitive advantage.
Releasing the source code for Communicator was thus widely seen as perhaps the 310

only way to bypass the poisoned well of competitively tangled, nonstandard
browser implementations. An Open Source browser could be made to comply with
the standardsif not by the immediate members involved with its creation, then by
creating a ”fork” of the program that was standards compliantbecause of the
rights of redistribution associated with an Open Source license. Open Source
would be the solution to an open-systems problem that had never been solved
because it had never confronted the issue of intellectual property directly. Free
Software, by contrast, had a well-developed solution in the GNU General Public
License, [pg104] also known as copyleft license, that would allow the software to
remain free and revive hope for maintaining open standards.
Writing Licenses Herein lies the rub, however: Netscape was immediately 311

embroiled in controversy among Free Software hackers because it chose to write
its own bespoke licenses for distributing the source code. Rather than rely on one
of the existing licenses, such as the GNU GPL or the Berkeley Systems Distribution
(BSD) or MIT licenses, they created their own: the Netscape Public License (NPL)
and the Mozilla Public License. The immediate concerns of Netscape had to do
90Frank Hecker, quoted in Hamerly and Paquin, ”Freeing the Source,” 198.
91See Moody, Rebel Code, chap. 11, for a more detailed version of the story.

Two Bits Christopher M. Kelty 81

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

with their existing network of contracts and agreements with other, third-party
developersboth those who had in the past contributed parts of the existing source
code that Netscape might not have the rights to redistribute as Free Software, and
those who were expecting in the future to buy and redistribute a commercial
version. Existing Free Software licenses were either too permissive, giving to third
parties rights that Netscape itself might not have, or too restrictive, binding
Netscape to make source code freely available (the GPL) when it had already
signed contracts with buyers of the nonfree code.
It was a complex and specific business situationa network of existing contracts 312

and licensed codethat created the need for Netscape to write its own license. The
NPL thus contained a clause that allowed Netscape special permission to relicense
any particular contribution to the source code as a proprietary product in order to
appease its third-party contracts; it essentially gave Netscape special rights that
no other licensee would have. While this did not necessarily undermine the Free
Software licensesand it was certainly Netscapes prerogativeit was contrary to the
spirit of Free Software: it broke the ”recursive public” into two halves. In order to
appease Free Software geeks, Netscape wrote one license for existing code (the
NPL) and a different license for new contributions: the Mozilla Public License.
Neither Stallman nor any other Free Software hacker was entirely happy with this 313

situation. Stallman pointed out three flaws: ”One flaw sends a bad philosophical
message, another puts the free software community in a weak position, while the
third creates a major practical problem within the free software community. Two of
the flaws apply to the Mozilla Public License as well.” He urged people [pg105] not to
use the NPL. Similarly, Bruce Perens suggested, ”Many companies have adopted a
variation of the MPL [sic] for their own programs. This is unfortunate, because the
NPL was designed for the specific business situation that Netscape was in at the
time it was written, and is not necessarily appropriate for others to use. It should
remain the license of Netscape and Mozilla, and others should use the GPL or the
BSD or X licenses.”92

Arguments about the fine details of licenses may seem scholastic, but the decision 314

had a huge impact on the structure of the new product. As Steven Weber has
pointed out, the choice of license tracks the organization of a product and can
determine who and what kinds of contributions can be made to a project.93 It is
not an idle choice; every new license is scrutinized with the same intensity or
denounced with the same urgency.
Coordinating Collaborations One of the selling points of Free Software, and 315

especially of its marketing as Open Source, is that it leverages the work of
thousands or hundreds of thousands of volunteer contributors across the Internet.
Such a claim almost inevitably leads to spurious talk of ”self-organizing” systems
and emergent properties of distributed collaboration. The Netscape press release
promised to ”harness the creative power of thousands of programmers on the
Internet by incorporating their best enhancements,” and it quoted CEO Jim
Barksdale as saying, ”By giving away the source code for future versions, we can
ignite the creative energies of the entire Net community and fuel unprecedented

92Bruce Perens, ”The Open Source Definition,” 184.
93Steven Weber, The Success of Open Source.

Two Bits Christopher M. Kelty 82

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

levels of innovation in the browser market.”94 But as anyone who has ever tried to
start or run a Free Software project knows, it never works out that way.
Software engineering is a notoriously hard problem.95 The halls of the software 316

industry are lined with the warning corpses of dead software methodologies.
Developing software in the dotcom boom was no different, except that the speed
of release cycles and the velocity of funding (the ”burn rate”) was faster than ever
before. Netscapes in-house development methodologies were designed to meet
these pressures, and as many who work in this field will attest, that method is
some version of a semistructured, deadline-driven, caffeine- and
smart-drink-fueled race to ”ship.”96

Releasing the Mozilla code, therefore, required a system of coordination that would 317

differ from the normal practice of in-house [pg106] software development by paid
programmers. It needed to incorporate the contributions of outsidersdevelopers
who didnt work for Netscape. It also needed to entice people to contribute, since
that was the bargain on which the decision to free the source was based, and to
allow them to track their contributions, so they could verify that their contributions
were included or rejected for legitimate reasons. In short, if any magical Open
Source self-organization were to take place, it would require a thoroughly
transparent, Internet-based coordination system.
At the outset, this meant practical things: obtaining the domain name mozilla.org; 318

setting up (and in turn releasing the source code for) the version-control system
(the Free Software standard cvs), the version-control interface (Bonsai), the ”build
system” that managed and displayed the various trees and (broken) branches of a
complex software project (Tinderbox), and a bug-reporting system for tracking
bugs submitted by users and developers (Bugzilla). It required an organizational
system within the Mozilla project, in which paid developers would be assigned to
check submissions from inside and outside, and maintainers or editors would be
designated to look at and verify that these contributions should be used.
In the end, the release of the Mozilla source code was both a success and a failure. 319

Its success was long in coming: by 2004, the Firefox Web browser, based on
Mozilla, had started to creep up the charts of most popular browsers, and it has
become one of the most visible and widely used Free Software applications. The
failure, however, was more immediate: Mozilla failed to reap the massive benefits
for Netscape that the 1995 give-away of Netscape Navigator had. Zawinski, in a
public letter of resignation in April 1999 (one year after the release), expressed
this sense of failure. He attributed Netscapes decline after 1996 to the fact that it
had ”stopped innovating” and become too large to be creative, and described the
decision to free the Mozilla source code as a return to this innovation: ”[The
announcement] was a beacon of hope to me. . . . [I]t was so crazy, it just might
work. I took my cue and ran with it, registering the domain that night, designing
the structure of the organization, writing the first version of the web site, and,

94”Netscape Announces Plans to Make Next-Generation Communicator Source Code Available Free
on the Net,” Netscape press release, 22 January 1998,
⌜ http://wp.netscape.com/newsref/pr/newsrelease558.html ⌟ (accessed 25 Sept 2007).
95On the history of software development methodologies, see Mahoney, ”The Histories of
Computing(s)” and ”The Roots of Software Engineering.”
96Especially good descriptions of what this cycle is like can be found in Ullman, Close to the Machine
and The Bug.

Two Bits Christopher M. Kelty 83

http://wp.netscape.com/newsref/pr/newsrelease558.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

along with my co-conspirators, explaining to room after room of Netscape
employees and managers how free software worked, and what we had to do to
make it work.”97 For Zawinski, the decision was both a chance for Netscape to
return to its glory and an opportunity [pg107] to prove the power of Free Software: ”I
saw it as a chance for the code to actually prosper. By making it not be a Netscape
project, but rather, be a public project to which Netscape was merely a contributor,
the fact that Netscape was no longer capable of building products wouldnt matter:
the outsiders would show Netscape how its done. By putting control of the web
browser into the hands of anyone who cared to step up to the task, we would
ensure that those people would keep it going, out of their own
self-interest.”98

But this promise didnt come trueor, at least, it didnt come true at the speed that 320

Zawinski and others in the software world were used to. Zawinski offered various
reasons: the project was primarily made up of Netscape employees and thus still
appeared to be a Netscape thing; it was too large a project for outsiders to dive
into and make small changes to; the code was too ”crufty,” that is, too
complicated, overwritten, and unclean. Perhaps most important, though, the
source code was not actually working: ”We never distributed the source code to a
working web browser, more importantly, to the web browser that people were
actually using.”99

Netscape failed to entice. As Zawinski put it, ”If someone were running a web 321

browser, then stopped, added a simple new command to the source, recompiled,
and had that same web browser plus their addition, they would be motivated to do
this again, and possibly to tackle even larger projects.”100 For Zawinski, the failure
to ”ship” a working browser was the biggest failure, and he took pains to suggest
that this failure was not an indictment of Free Software as such: ”Let me assure
you that whatever problems the Mozilla project is having are not because open
source doesnt work. Open source does work, but it is most definitely not a
panacea. If theres a cautionary tale here, it is that you cant take a dying project,
sprinkle it with the magic pixie dust of open source, and have everything magically
work out. Software is hard. The issues arent that simple.”101

Fomenting Movements The period from 1 April 1998, when the Mozilla source 322

code was first released, to 1 April 1999, when Zawinski announced its failure,
couldnt have been a headier, more exciting time for participants in Free Software.
Netscapes decision to release the source code was a tremendous opportunity for
geeks involved in Free Software. It came in the midst of the rollicking dotcom
bubble. It also came in the midst of the widespread adoption of [pg108] key Free
Software tools: the Linux operating system for servers, the Apache Web server for
Web pages, the perl and python scripting languages for building quick Internet
applications, and a number of other lower-level tools like Bind (an implementation
of the DNS protocol) or sendmail for e-mail.
Perhaps most important, Netscapes decision came in a period of fevered and 323

97Jamie Zawinski, ”resignation and postmortem,” 31 March 1999,
⌜ http://www.jwz.org/gruntle/nomo.html ⌟ .
98Ibid.
99Ibid.

100Ibid.
101Ibid.

Two Bits Christopher M. Kelty 84

http://www.jwz.org/gruntle/nomo.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

intense self-reflection among people who had been involved in Free Software in
some way, stretching back to the mid-1980s. Eric Raymonds article ”The
Cathedral and The Bazaar,” delivered at the Linux Kongress in 1997 and the
OReilly Perl Conference the same year, had started a buzz among Free Software
hackers. It was cited by Frank Hecker and Eric Hahn at Netscape as one of the
sources for their thinking about the decision to free Mozilla; Raymond and Bruce
Perens had both been asked to consult with Netscape on Free Software strategy. In
April of the same year Tim OReilly, a publisher of handbooks for Free Software,
organized a conference called the Freeware Summit.
The Freeware Summits very name indicated some of the concern about definition 324

and direction. Stallman, despite his obvious centrality, but also because of it, was
not invited to the Freeware Summit, and the Free Software Foundation was not
held up as the core philosophical guide of this event. Rather, according to the
press release distributed after the meeting, ”The meetings purpose was to
facilitate a high-level discussion of the successes and challenges facing the
developers. While this type of software has often been called freeware or free
software in the past, the developers agreed that commercial development of the
software is part of the picture, and that the terms open source or sourceware best
describe the development method they support.”102

It was at this summit that Raymonds suggestion of ”Open Source” as an alternative 325

name was first publicly debated.103 Shortly thereafter, Raymond and Perens
created the Open Source Initiative and penned ”The Open Source Definition.” All
of this self-reflection was intended to capitalize on the waves of attention being
directed at Free Software in the wake of Netscapes announcement.
The motivations for these changes came from a variety of sourcesranging from a 326

desire to be included in the dotcom boom to a powerful (ideological) resistance to
being ideological. Linus Torvalds loudly proclaimed that the reason to do Free
Software was because it was ”fun”; others insisted that it made better business
[pg109] sense or that the stability of infrastructures like the Internet depended on a
robust ability to improve them from any direction. But none of them questioned
how Free Software got done or proposed to change it.
Raymonds paper ”The Cathedral and the Bazaar” quickly became the most widely 327

told story of how Open Source works and why it is important; it emphasizes the
centrality of novel forms of coordination over the role of novel copyright licenses
or practices of sharing source code. ”The Cathedral and the Bazaar” reports
Raymonds experiments with Free Software (the bazaar model) and reflects on the
difference between it and methodologies adopted by industry (the cathedral
model). The paper does not truck with talk of freedom and has no denunciations of
software hoarding à la Stallman. Significantly, it also has no discussion of issues of
licensing. Being a hacker, however, Raymond did give his paper a
”revision-history,” which proudly displays revision 1.29, 9 February 1998:
”Changed free software to open source.”104

102”Open Source Pioneers Meet in Historic Summit,” press release, 14 April 1998, OReilly Press,
⌜ http://press.oreilly.com/pub/pr/796 ⌟ .
103See Hamerly and Paquin, ”Freeing the Source.” The story is elegantly related in Moody, Rebel Code,
182-204. Raymond gives Christine Petersen of the Foresight Institute credit for the term open source.
104From Raymond, The Cathedral and the Bazaar. The changelog is available online only:
⌜ http://www.catb.org/ esr/writings/cathedral-bazaar/cathedral-bazaar/ ⌟ .

Two Bits Christopher M. Kelty 85

http://press.oreilly.com/pub/pr/796
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Raymond was determined to reject the philosophy of liberty that Stallman and the 328

Free Software Foundation represented, but not in order to create a political
movement of his own. Rather, Raymond (and the others at the Freeware Summit)
sought to cash in on the rising tide of the Internet economy by turning the creation
of Free Software into something that made more sense to investors, venture
capitalists, and the stock-buying public. To Raymond, Stallman and the Free
Software Foundation represented not freedom or liberty, but a kind of dogmatic,
impossible communism. As Raymond was a committed libertarian, one might
expect his core beliefs in the necessity of strong property rights to conflict with the
strange communalism of Free Softwareand, indeed, his rhetoric was focused on
pragmatic, business-minded, profit-driven, and market-oriented uses of Free
Software. For Raymond, the essentially interesting component of Free Software
was not its enhancement of human liberty, but the innovation in software
production that it represented (the ”development model”). It was clear that Free
Software achieved something amazing through a clever inversion of strong
property rights, an inversion which could be expected to bring massive revenue in
some other form, either through cost-cutting or, Netscape-style, through the stock
market.
Raymond wanted the business world and the mainstream industry to recognize 329

Free Softwares potential, but he felt that Stallmans [pg110] rhetoric was getting in
the way. Stallmans insistence, for example, on calling corporate
intellectual-property protection of software ”hoarding” was doing more damage
than good in terms of Free Softwares acceptance among businesses, as a practice,
if not exactly a product.
Raymonds papers channeled the frustration of an entire generation of Free 330

Software hackers who may or may not have shared Stallmans dogmatic
philosophical stance, but who nonetheless wanted to participate in the creation of
Free Software. Raymonds paper, the Netscape announcement, and the Freeware
Summit all played into a palpable anxiety: that in the midst of the single largest
creation of paper wealth in U.S. history, those being enriched through Free
Software and the Internet were not those who built it, who maintained it, or who
got it.
The Internet giveaway was a conflict of propriety: hackers and geeks who had built 331

the software that made it work, under the sign of making it free for all, were seeing
that software generate untold wealth for people who had not built it (and
furthermore, who had no intention of keeping it free for all). Underlying the
creation of wealth was a commitment to a kind of permanent technical freedoma
moral ordernot shared by those who were reaping the most profit. This anxiety
regarding the expropriation of work (even if it had been a labor of love) was
ramified by Netscapes announcement.
All through 1998 and 1999, buzz around Open Source built. Little-known 332

companies such as Red Hat, VA Linux, Cygnus, Slackware, and SuSe, which had
been providing Free Software support and services to customers, suddenly entered
media and business consciousness. Articles in the mainstream press circulated
throughout the spring and summer of 1998, often attempting to make sense of the
name change and whether it meant a corresponding change in practice. A
front-cover article in Forbes, which featured photos of Stallman, Larry Wall, Brian
Behlendorf, and Torvalds (figure 2), was noncommittal, cycling between Free

Two Bits Christopher M. Kelty 86

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Software, Open Source, and Freeware.105

2bits_03_02-100.png,w620h657 [* ”Peace, Love and Software,” cover of Forbes, 333

10 August 1998. Used with permission of Forbes and Nathaniel Welch.]
By early 1999, OReilly Press published Open Sources: Voices from the Open Source 334

Revolution, a hastily written but widely read book. It included a number of
articlesthis time including one by Stallmanthat cobbled together the first widely
available public history of Free Software, both the practice and the technologies
[pg111] involved. Kirk McKusicks article detailed the history of important
technologies like the BSD version of UNIX, while an article by Brian Behlendorf, of
Apache, detailed the practical challenges of running Free Software projects.
Raymond provided a history of hackers and a self-aggrandizing article about his
own importance in creating the movement, while Stallmans contribution told his
own version of the rise of Free Software.
By December 1999, the buzz had reached a fever pitch. When VA Linux, a 335

legitimate company which actually made something realcomputers with Linux
installed on themwent public, its shares value gained 700 percent in one day and
was the single [pg112] most valuable initial public offering of the era. VA Linux took
the unconventional step of allowing contributors to the Linux kernel to buy into the
stock before the IPO, thus bringing at least a partial set of these contributors into
the mainstream Ponzi scheme of the Internet dotcom economy. Those who
managed to sell their stock ended up benefiting from the boom, whether or not
their contributions to Free Software truly merited it. In a roundabout way,
Raymond, OReilly, Perens, and others behind the name change had achieved
recognition for the central role of Free Software in the success of the Internetand
now its true name could be known: Open Source.
Yet nothing much changed in terms of the way things actually got done. Sharing 336

source code, conceiving openness, writing licenses, coordinating projectsall these
continued as before with no significant differences between those flashing the
heroic mantle of freedom and those donning the pragmatic tunic of methodology.
Now, however, stories proliferated; definitions, distinctions, details, and
detractions filled the ether of the Internet, ranging from the philosophical
commitments of Free Software to the parables of science as the ”original open
source” software. Free Software proponents refined their message concerning
rights, while Open Source advocates refined their claims of political agnosticism or
nonideological commitments to ”fun.” All these stories served to create
movements, to evangelize and advocate and, as Eugen Leitl would say, to ”corrupt
young minds” and convert them to the cause. The fact that there are different
narratives for identical practices is an advantageous fact: regardless of why
people think they are doing what they are doing, they are all nonetheless
contributing to the same mysterious thing.

A Movement? 337

To most onlookers, Free Software and Open Source seem to be overwhelmed with 338

frenzied argument; the flame wars and disputes, online and off, seem to dominate
everything. To attend a conference where geeksespecially high-profile geeks like
105Josh McHugh, ”For the Love of Hacking,” Forbes, 10 August 1998, 94-100.

Two Bits Christopher M. Kelty 87

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Raymond, Stallman, and Torvaldsare present, one might suspect that the very
detailed practices of Free Software are overseen by the brow-beating, histrionic
antics of a few charismatic leaders and that ideological commitments result in
divergent, incompatible, and affect-laden [pg113] opposition which must of necessity
take specific and incompatible forms. Strangely, this is far from the case: all this
sound and fury doesnt much change what people do, even if it is a requirement of
apprenticeship. It truly is all over but for the shouting.
According to most of the scholarly literature, the function of a movement is to 339

narrate the shared goals and to recruit new members. But is this what happens in
Free Software or Open Source?106 To begin with, movement is an awkward word;
not all participants would define their participation this way. Richard Stallman
suggests that Free Software is social movement, while Open Source is a
development methodology. Similarly some Open Source proponents see it as a
pragmatic methodology and Free Software as a dogmatic philosophy. While there
are specific entities like the Free Software Foundation and the Open Source
Initiative, they do not comprise all Free Software or Open Source. Free Software
and Open Source are neither corporations nor organizations nor consortia (for
there are no organizations to consort); they are neither national, subnational, nor
international; they are not ”collectives” because no membership is required or
assumedindeed to hear someone assert ”I belong” to Free Software or Open
Source would sound absurd to anyone who does. Neither are they shady bands of
hackers, crackers, or thieves meeting in the dead of night, which is to say that
they are not an ”informal” organization, because there is no formal equivalent to
mimic or annul. Nor are they quite a crowd, for a crowd can attract participants
who have no idea what the goal of the crowd is; also, crowds are temporary, while
movements extend over time. It may be that movement is the best term of the lot,
but unlike social movements, whose organization and momentum are fueled by
shared causes or broken by ideological dispute, Free Software and Open Source
share practices first, and ideologies second. It is this fact that is the strongest
confirmation that they are a recursive public, a form of public that is as concerned
with the material practical means of becoming public as it is with any given public
debate.
The movement, as a practice of argument and discussion, is thus centered around 340

core agreements about the other four kinds of practices. The discussion and
argument have a specific function: to tie together divergent practices according to
a wide consensus which tries to capture the why of Free Software. Why is it
different from normal software development? Why is it necessary? Why now?
[pg114] Why do people do it? Why do people use it? Can it be preserved and

106On social movementsthe closest analog, developed long agosee Gerlach and Hine, People, Power,
Change, and Freeman and Johnson, Waves of Protest. However, the Free Software and Open Source
Movements do not have ”causes” of the kind that conventional movements do, other than the
perpetuation of Free and Open Source Software (see Coleman, ”Political Agnosticism”; Chan,
”Coding Free Software”). Similarly, there is no single development methodology that would cover
only Open Source. Advocates of Open Source are all too willing to exclude those individuals or
organizations who follow the same ”development methodology” but do not use a Free Software
licensesuch as Microsofts oft-mocked ”shared-source” program. The list of licenses approved by both
the Free Software Foundation and the Open Source Initiative is substantially the same. Further, the
Debian Free Software Guidelines and the ”Open Source Definition” are almost identical (compare
⌜ http://www.gnu.org/philosophy/license-list.html ⌟ with ⌜ http://www.opensource.org/licenses/ ⌟ [both
accessed 30 June 2006]).

Two Bits Christopher M. Kelty 88

http://www.gnu.org/philosophy/license-list.html
http://www.opensource.org/licenses/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

enhanced? None of these questions address the how: how should source code
circulate? How should a license be written? Who should be in charge? All of these
”hows” change slowly and experimentally through the careful modulation of the
practices, but the ”whys” are turbulent and often distracting. Nonetheless, people
engaged in Free Softwareusers, developers, supporters, and observerscould hardly
remain silent on this point, despite the frequent demand to just ”shut up and show
me the code.” ”Figuring out” Free Software also requires a practice of reflecting on
what is central to it and what is outside of it.
The movement, as a practice of discussion and argument, is made up of stories. It 341

is a practice of storytelling: affect- and intellect-laden lore that orients existing
participants toward a particular problem, contests other histories, parries attacks
from outside, and draws in new recruits.107 This includes proselytism and
evangelism (and the usable pasts of protestant reformations, singularities,
rebellion and iconoclasm are often salient here), whether for the reform of
intellectual-property law or for the adoption of Linux in the trenches of corporate
America. It includes both heartfelt allegiance in the name of social justice as well
as political agnosticism stripped of all ideology.108 Every time Free Software is
introduced to someone, discussed in the media, analyzed in a scholarly work, or
installed in a workplace, a story of either Free Software or Open Source is used to
explain its purpose, its momentum, and its temporality. At the extremes are the
prophets and proselytes themselves: Eric Raymond describes Open Source as an
evolutionarily necessary outcome of the natural tendency of human societies
toward economies of abundance, while Richard Stallman describes it as a defense
of the fundamental freedoms of creativity and speech, using a variety of
philosophical theories of liberty, justice, and the defense of freedom.109 Even
scholarly analyses must begin with a potted history drawn from the self-narration
of geeks who make or advocate free software.110 Indeed, as a methodological
aside, one reason it is so easy to track such stories and narratives is because
geeks like to tell and, more important, like to archive such storiesto create Web
pages, definitions, encyclopedia entries, dictionaries, and mini-histories and to
save every scrap of correspondence, every fight, and every resolution related to
their activities. This ”archival hubris” yields a very peculiar and specific kind of
fieldsite: one in which a kind [pg115] of ”as-it-happens” ethnographic observation is
possible not only through ”being there” in the moment but also by being there in
the massive, proliferating archives of moments past. Understanding the
movement as a changing entity requires constantly glancing back at its future
promises and the conditions of their making.
Stories of the movement are also stories of a recursive public. The fact that 342

movement isnt quite the right word is evidence of a kind of grasping, a figuring out
of why these practices make sense to all these geeks, in this place and time; it is a
practice that is not so different from my own ethnographic engagement with it.

107It is, in the terms of Actor Network Theory, a process of ”enrollment” in which participants find
ways to rhetorically alignand to disaligntheir interests. It does not constitute the substance of their
interest, however. See Latour, Science in Action; Callon, ”Some Elements of a Sociology of
Translation.”
108Coleman, ”Political Agnosticism.”
109See, respectively, Raymond, The Cathedral and the Bazaar, and Williams, Free as in Freedom.
110For example, Castells, The Internet Galaxy, and Weber, The Success of Open Source both tell
versions of the same story of origins and development.

Two Bits Christopher M. Kelty 89

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Note that both Free Software and Open Source tell stories of movement(s): they
are not divided by a commercial-noncommercial line, even if they are divided by
ill-defined and hazy notions of their ultimate goals. The problem of a recursive
public (or, in an alternate language, a recursive market) as a social imaginary of
moral and technical order is common to both of them as part of their practices.
Thus, stories about ”the movement” are detailed stories about the technical and
moral order that geeks inhabit, and they are bound up with the functions and fates
of the Internet. Often these stories are themselves practices of inclusion and
exclusion (e.g., ”this license is not a Free Software license” or ”that software is not
an open system”); sometimes the stories are normative definitions about how Free
Software should look. But they are, always, stories that reveal the shared moral
and technical imaginations that make up Free Software as a recursive public.

Conclusion 343

Before 1998, there was no movement. There was the Free Software Foundation, 344

with its peculiar goals, and a very wide array of other projects, people, software,
and ideas. Then, all of a sudden, in the heat of the dotcom boom, Free Software
was a movement. Suddenly, it was a problem, a danger, a job, a calling, a dogma,
a solution, a philosophy, a liberation, a methodology, a business plan, a success,
and an alternative. Suddenly, it was Open Source or Free Software, and it became
necessary to choose sides. After 1998, debates about definition exploded;
denunciations and manifestos and journalistic hagiography proliferated. Ironically,
the creation of two names allowed people to identify one thing, for [pg116] these two
names referred to identical practices, licenses, tools, and organizations. Free
Software and Open Source shared everything ”material,” but differed vocally and
at great length with respect to ideology. Stallman was denounced as a kook, a
communist, an idealist, and a dogmatic holding back the successful adoption of
Open Source by business; Raymond and users of ”open source” were charged with
selling out the ideals of freedom and autonomy, with the dilution of the principles
and the promise of Free Software, as well as with being stooges of capitalist
domination. Meanwhile, both groups proceeded to create objectsprincipally
softwareusing tools that they agreed on, concepts of openness that they agreed
on, licenses that they agreed on, and organizational schemes that they agreed on.
Yet never was there fiercer debate about the definition of Free Software.
On the one hand, the Free Software Foundation privileges the liberty and creativity 345

of individual geeks, geeks engaged in practices of self-fashioning through the
creation of software. It gives precedence to the liberal claim that without freedom
of expression, individuals are robbed of their ability to self-determine. On the other
hand, Open Source privileges organizations and processes, that is, geeks who are
engaged in building businesses, nonprofit organizations, or governmental and
public organizations of some form or another. It gives precedence to the
pragmatist (or polymathic) view that getting things done requires flexible
principles and negotiation, and that the public practice of building and running
things should be separate from the private practice of ethical and political beliefs.
Both narratives give geeks ways of making sense of a practice that they share in
almost all of its details; both narratives give geeks a way to understand how Free
Software or Open Source Software is different from the mainstream, proprietary

Two Bits Christopher M. Kelty 90

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

software development that dominates their horizons. The narratives turn the
haphazard participation and sharing that existed before 1998 into meaningful,
goal-directed practices in the present, turning a class-in-itself into a class-for-itself,
to use a terminology for the most part unwelcome among geeks.
If two radically opposed ideologies can support people engaged in identical 346

practices, then it seems obvious that the real space of politics and contestation is
at the level of these practices and their emergence. These practices emerge as a
response to a reorientation of power and knowledge, a reorientation somewhat
impervious to [pg117] conventional narratives of freedom and liberty, or to pragmatic
claims of methodological necessity or market-driven innovation. Were these
conventional narratives sufficient, the practices would be merely bureaucratic
affairs, rather than the radical transformations they are.

Two Bits Christopher M. Kelty 91

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

4.Sharing Source Code 347

Free Software would be nothing without shared source code. The idea is built into 348

the very name ”Open Source,” and it is a requirement of all Free Software licenses
that source code be open to view, not ”welded shut.” Perhaps ironically, source
code is the most material of the five components of Free Software; it is both an
expressive medium, like writing or speech, and a tool that performs concrete
actions. It is a mnemonic that translates between the illegible electron-speed
doings of our machines and our lingering ability to partially understand and control
them as human agents. Many Free Software programmers and advocates suggest
that ”information wants to be free” and that sharing is a natural condition of
human life, but I argue something contrary: sharing produces its own kind of moral
and technical order, that is, ”information makes people want freedom” and how
they want it is related to how that information is created and circulated. In this
chapter I explore the [pg119] twisted and contingent history of how source code and
its sharing have come to take the technical, legal, and pedagogical forms they
have today, and how the norms of sharing have come to seem so natural to
geeks.
Source code is essential to Free Software because of the historically specific ways 349

in which it has come to be shared, ”ported,” and ”forked.” Nothing about the
nature of source code requires that it be shared, either by corporations for whom
secrecy and jealous protection are the norm or by academics and geeks for whom
source code is usually only one expression, or implementation, of a greater idea
worth sharing. However, in the last thirty years, norms of sharing source
codetechnical, legal, and pedagogical normshave developed into a seemingly
natural practice. They emerged through attempts to make software into a product,
such as IBMs 1968 ”unbundling” of software and hardware, through attempts to
define and control it legally through trade secret, copyright, and patent law, and
through attempts to teach engineers how to understand and to create more
software.
The story of the norms of sharing source code is, not by accident, also the history 350

of the UNIX operating system.111 The UNIX operating system is a monstrous
academic-corporate hybrid, an experiment in portability and sharing whose impact
is widely and reverently acknowledged by geeks, but underappreciated more
generally. The story of UNIX demonstrates the details of how source code has
come to be shared, technically, legally, and pedagogically. In technical terms UNIX
and the programming language C in which it was written demonstrated several
key ideas in operating-systems theory and practice, and they led to the
widespread ”porting” of UNIX to virtually every kind of hardware available in the
1970s, all around the world. In legal terms UNIXs owner, AT&T, licensed it widely
and liberally, in both binary and source-code form; the legal definition of UNIX as a
product, however, was not the same as the technical definition of UNIX as an

111”Sharing” source code is not the only kind of sharing among geeks (e.g., informal sharing to
communicate ideas), and UNIX is not the only [pg324] shared software. Other examples that exhibit this
kind of proliferation (e.g., the LISP programming language, the TeX text-formatting system) are as
ubiquitous as UNIX today. The inverse of my argument here is that selling produces a different kind
of order: many products that existed in much larger numbers than UNIX have since disappeared
because they were never ported or forked; they are now part of dead-computer museums and
collections, if they have survived at all.

Two Bits Christopher M. Kelty 92

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

evolving experiment in portable operating systemsa tension that has continued
throughout its lifetime. In pedagogical terms UNIX became the very paradigm of
an ”operating system” and was thereby ported not only in the technical sense
from one machine to another, but from machines to minds, as computer-science
students learning the meaning of ”operating system” studied the details of the
quasi-legally shared UNIX source code.112

The proliferation of UNIX was also a hybrid commercial-academic undertaking: it 351

was neither a ”public domain” object shared solely among academics, nor was it a
conventional commercial product. Proliferation occurred through novel forms of
academic sharing as well as through licensing schemes constrained by the peculiar
status of AT&T, a regulated monopoly forbidden to enter the computer and
software industry before 1984. Thus proliferation was not mere replication: it was
not the sale of copies of UNIX, but a complex web of shared and re-shared chunks
of source code, and the reimplementation of an elegant and simple conceptual
scheme. As UNIX proliferated, it was stabilized in multiple ways: by academics
seeking to keep it whole and self-compatible through contributions of source code;
by lawyers at AT&T seeking to define boundaries that mapped onto laws, licenses,
versions, and regulations; and by professors seeking to define it as an exemplar of
the core concepts of operating-system theory. In all these ways, UNIX was a kind
of primal recursive public, drawing together people for whom the meaning of their
affiliation was the use, modification, and stabilization of UNIX.
The obverse of proliferation is differentiation: forking. UNIX is admired for its 352

integrity as a conceptual thing and despised (or marveled at) for its truly tangled
genealogical tree of ports and forks: new versions of UNIX, some based directly on
the source code, some not, some licensed directly from AT&T, some sublicensed or
completely independent.
Forking, like random mutation, has had both good and bad effects; on the one 353

hand, it ultimately created versions of UNIX that were not compatible with
themselves (a kind of autoimmune response), but it also allowed the merger of
UNIX and the Arpanet, creating a situation wherein UNIX operating systems came
to be not only the paradigm of operating systems but also the paradigm of
networked computers, through its intersection with the development of the TCP/IP
protocols that are at the core of the Internet.113 By the mid-1980s, UNIX was a
kind of obligatory passage point for anyone interested in networking, operating
systems, the Internet, and especially, modes of creating, sharing, and modifying
source codeso much so that UNIX has become known among geeks not just as an
operating system but as a philosophy, an answer to a very old question in new

112The story of UNIX has not been told, and yet it has been told hundreds of thousands of times.
Every hacker, programmer, computer scientist, and geek tells a version of UNIX historya usable past.
Thus, the sources for this chapter include these stories, heard and recorded throughout my fieldwork,
but also easily accessible in academic work on Free Software, which enthusiastically participates in
this potted-history retailing. See, for example, Steven Weber, The Success of Open Source; Castells,
The Internet Galaxy; Himanen, The Hacker Ethic; Benkler, The Wealth of Networks. To date there is
but one detailed history of UNIXA Quarter Century of UNIX, by Peter Saluswhich I rely on extensively.
Matt Rattos dissertation, ”The Pressure of Openness,” also contains an excellent analytic history of
the events told in this chapter.
113The intersection of UNIX and TCP/IP occurred around 1980 and led to the famous switch from the
Network Control Protocol (NCP) to the Transmission Control Protocol/Internet Protocol that occurred
on 1 January 1983 (see Salus, Casting the Net).

Two Bits Christopher M. Kelty 93

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

garb: how shall we live, among a new world of machines, software, and
networks?

Before Source 354

In the early days of computing machinery, there was no such thing as source code. 355

Alan Turing purportedly liked to talk to the machine in binary. Grace Hopper, who
invented an early compiler, worked as close to the Harvard Mark I as she could get:
flipping switches and plugging and unplugging relays that made up the ”code” of
what the machine would do. Such mechanical and meticulous work hardly merits
the terms reading and writing; there were no GOTO statements, no line numbers,
only calculations that had to be translated from the pseudo-mathematical writing
of engineers and human computers to a physical or mechanical configuration.114
Writing and reading source code and programming languages was a long, slow
development that became relatively widespread only by the mid-1970s. So-called
higher-level languages began to appear in the late 1950s: FORTRAN, COBOL, Algol,
and the ”compilers” which allowed for programs written in them to be transformed
into the illegible mechanical and valvular representations of the machine. It was in
this era that the terms source language and target language emerged to
designate the activity of translating higher to lower level languages.115

There is a certain irony about the computer, not often noted: the unrivaled power 356

of the computer, if the ubiquitous claims are believed, rests on its general
programmability; it can be made to do any calculation, in principle. The so-called
universal Turing machine provides the mathematical proof.116 Despite the abstract
power of such certainty, however, we do not live in the world of The Computerwe
live in a world of computers. The hardware systems that manufacturers created
from the 1950s onward were so specific and idiosyncratic that it was inconceivable
that one might write a program for one machine and then simply run it on another.
”Programming” became a bespoke practice, tailored to each new machine, and
while programmers of a particular machine may well have shared programs with
each other, they would not have seen much point in sharing with users of a
different machine. Likewise, computer scientists shared mathematical descriptions
of algorithms and ideas for automation with as much enthusiasm as corporations
jealously guarded theirs, but this sharing, or secrecy, did not extend to the sharing

114Light, ”When Computers Were Women”; Grier, When Computers Were Human.
115There is a large and growing scholarly history of software: Wexelblat, History of Programming
Languages and Bergin and Gibson, History of Programming Languages 2 are collected papers by
historians and participants. Key works in history include Campbell-Kelly, From Airline Reservations to
Sonic the Hedgehog; Akera and Nebeker, From 0 to 1; Hashagen, Keil-Slawik, and Norberg, History of
ComputingSoftware Issues; Donald A. MacKenzie, Mechanizing Proof. Michael Mahoney has written
by far the most about the early history of software; his relevant works include ”The Roots of Software
Engineering,” ”The Structures of Computation,” ”In Our Own Image,” and ”Finding a History for
Software Engineering.” On UNIX in particular, there is shockingly little historical work. Martin
Campbell-Kelly and William Aspray devote a mere two pages in their general history Computer. As
early as 1978, Ken Thompson and Dennis Ritchie were reflecting on the ”history” of UNIX in ”The
UNIX Time-Sharing System: A Retrospective.” Ritchie maintains a Web site that contains a valuable
collection of early documents and his own reminiscences (⌜ http://www.cs.bell-labs.com/who/dmr/ ⌟ [pg325]

). Mahoney has also conducted interviews with the main participants in the development of UNIX at
Bell Labs. These interviews have not been published anywhere, but are drawn on as background in
this chapter (interviews are in Mahoneys personal files).
116Turing, ”On Computable Numbers.” See also Davis, Engines of Logic, for a basic explanation.

Two Bits Christopher M. Kelty 94

http://www.cs.bell-labs.com/who/dmr/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

of the program itself. The need to ”rewrite” a program for each machine was not
just a historical accident, but [pg122] was determined by the needs of designers and
engineers and the vicissitudes of the market for such expensive machines.117

In the good old days of computers-the-size-of-rooms, the languages that humans 357

used to program computers were mnemonics; they did not exist in the computer,
but on a piece of paper or a specially designed code sheet. The code sheet gave
humans who were not Alan Turing a way to keep track of, to share with other
humans, and to think systematically about the invisible light-speed calculations of
a complicated device. Such mnemonics needed to be ”coded” on punch cards or
tape; if engineers conferred, they conferred over sheets of paper that matched up
with wires, relays, and switchesor, later, printouts of the various machine-specific
codes that represented program and data.
With the introduction of programming languages, the distinction between a 358

”source” language and a ”target” language entered the practice: source languages
were ”translated” into the illegible target language of the machine. Such
higher-level source languages were still mnemonics of sortsthey were certainly
easier for humans to read and write, mostly on yellowing tablets of paper or special
code sheetsbut they were also structured enough that a source language could be
input into a computer and translated into a target language which the designers of
the hardware had specified. Inputting commands and cards and source code
required a series of actions specific to each machine: a particular card reader or,
later, a keypunch with a particular ”editor” for entering the commands. Properly
input and translated source code provided the machine with an assembled binary
program that would, in fact, run (calculate, operate, control). It was a separation,
an abstraction that allowed for a certain division of labor between the ingenious
human authors and the fast and mechanical translating machines.
Even after the invention of programming languages, programming ”on” a 359

computersitting at a glowing screen and hacking through the nightwas still a long
time in coming. For example, only by about 1969 was it possible to sit at a
keyboard, write source code, instruct the computer to compile it, then run the
programall without leaving the keyboardan activity that was all but unimaginable
in the early days of ”batch processing.”118 Very few programmers worked in such a
fashion before the mid-1970s, when text editors that allowed programmers to see
the text on a screen rather [pg123] than on a piece of paper started to proliferate.119
We are, by now, so familiar with the image of the man or woman sitting at a screen
interacting with this device that it is nearly impossible to imagine how such a
seemingly obvious practice was achieved in the first placethrough the slow
117Sharing programs makes sense in this period only in terms of user groups such as SHARE (IBM)
and USE (DEC). These groups were indeed sharing source code and sharing programs they had
written (see Akera, ”Volunteerism and the Fruits of Collaboration”), but they were constituted around
specific machines and manufacturers; brand loyalty and customization were familiar pursuits, but
sharing source code across dissimilar computers was not.
118See Waldrop, The Dream Machine, 142-47.
119A large number of editors were created in the 1970s; Richard Stallmans EMACS and Bill Joys vi
remain the most well known. Douglas Engelbart is somewhat too handsomely credited with the
creation of the interactive computer, but the work of Butler Lampson and Peter Deutsch in Berkeley,
as well as that of the Multics team, Ken Thompson, and others on early on-screen editors is surely
more substantial in terms of the fundamental ideas and problems of manipulating text files on a
screen. This story is largely undocumented, save for in the computer-science literature itself. On
Engelbart, see Bardini, Bootstrapping.

Two Bits Christopher M. Kelty 95

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

accumulation of the tools and techniques for working on a new kind of writingand
how that practice exploded into a Babel of languages and machines that betrayed
the promise of the general-purpose computing machine.
The proliferation of different machines with different architectures drove a desire, 360

among academics especially, for the standardization of programming languages,
not so much because any single language was better than another, but because it
seemed necessary to most engineers and computer users to share an emerging
corpus of algorithms, solutions, and techniques of all kinds, necessary to avoid
reinventing the wheel with each new machine. Algol, a streamlined language
suited to algorithmic and algebraic representations, emerged in the early 1960s as
a candidate for international standardization. Other languages competed on
different strengths: FORTRAN and COBOL for general business use; LISP for
symbolic processing. At the same time, the desire for a standard ”higher-level”
language necessitated a bestiary of translating programs: compilers, parsers,
lexical analyzers, and other tools designed to transform the higher-level
(human-readable) language into a machine-specific lower-level language, that is,
machine language, assembly language, and ultimately the mystical zeroes and
ones that course through our machines. The idea of a standard language and the
necessity of devising specific tools for translation are the origin of the problem of
portability: the ability to move softwarenot just good ideas, but actual programs,
written in a standard languagefrom one machine to another.
A standard source language was seen as a way to counteract the proliferation of 361

different machines with subtly different architectures. Portable source code would
allow programmers to imagine their programs as ships, stopping in at ports of call,
docking on different platforms, but remaining essentially mobile and unchanged
by these port-calls. Portable source code became the Esperanto of humans who
had wrought their own Babel of tribal hardware machines.
Meanwhile, for the computer industry in the 1960s, portable source code was 362

largely a moot point. Software and hardware were [pg124] two sides of single,
extremely expensive coinno one, except engineers, cared what language the code
was in, so long as it performed the task at hand for the customer. Each new
machine needed to be different, faster, and, at first, bigger, and then smaller, than
the last. The urge to differentiate machines from each other was not driven by
academic experiment or aesthetic purity, but by a demand for marketability,
competitive advantage, and the transformation of machines and software into
products. Each machine had to do something really well, and it needed to be
developed in secret, in order to beat out the designs and innovations of
competitors. In the 1950s and 1960s the software was a core component of this
marketable object; it was not something that in itself was differentiated or
separately distributeduntil IBMs famous decision in 1968 to ”unbundle” software
and hardware.
Before the 1970s, employees of a computer corporation wrote software in-house. 363

The machine was the product, and the software was just an extra line-item on the
invoice. IBM was not the first to conceive of software as an independent product
with its own market, however. Two companies, Informatics and Applied Data
Research, had explored the possibilities of a separate market in software.120

120See Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog.

Two Bits Christopher M. Kelty 96

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Informatics, in particular, developed the first commercially successful software
product, a business-management system called Mark IV, which in 1967 cost
$30,000. Informatics president Walter Bauer ”later recalled that potential buyers
were astounded by the price of Mark IV. In a world accustomed to free software the
price of $30,000 was indeed high.”121

IBMs unbundling decision marked a watershed, the point at which ”portable” 364

source code became a conceivable idea, if not a practical reality, to many in the
industry.122 Rather than providing a complete package of hardware and software,
IBM decided to differentiate its products: to sell software and hardware separately
to consumers.123 But portability was not simply a technical issue; it was a
political-economic one as well. IBMs decision was driven both by its desire to
create IBM software that ran on all IBM machines (a central goal of the famous
OS/360 project overseen and diagnosed by Frederick Brooks) and as response to
an antitrust suit filed by the U.S. Department of Justice.124 The antitrust suit
included as part of its claims the suggestion that the close tying of software and
hardware represented a form of monopolistic behavior, and it prompted IBM to
consider strategies to ”unbundle” its product.
Portability in the business world meant something specific, however. Even if 365

software could be made portable at a technical leveltransferable between two
different IBM machinesthis was certainly no guarantee that it would be portable
between customers. One companys accounting program, for example, may not
suit anothers practices. Portability was therefore hindered both by the diversity of
machine architectures and by the diversity of business practices and organization.
IBM and other manufacturers therefore saw no benefit to standardizing source
code, as it could only provide an advantage to competitors.125

Portability was thus not simply a technical problemthe problem of running one 366

program on multiple architecturesbut also a kind of political-economic problem.
The meaning of product was not always the same as the meaning of hardware or
software, but was usually some combination of the two. At that early stage, the
outlines of a contest over the meaning of portable or shareable source code are
visible, both in the technical challenges of creating high-level languages and in the
political-economic challenges that corporations faced in creating distinctive
proprietary products.

Two Bits Christopher M. Kelty 97

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

The UNIX Time-Sharing System 367

Set against this backdrop, the invention, success, and proliferation of the UNIX 368

operating system seems quite monstrous, an aberration of both academic and
commercial practice that should have failed in both realms, instead of becoming
the most widely used portable operating system in history and the very paradigm
of an ”operating system” in general. The story of UNIX demonstrates how
portability became a reality and how the particular practice of sharing UNIX source
code became a kind of de facto standard in its wake.
UNIX was first written in 1969 by Ken Thompson and Dennis Ritchie at Bell 369

Telephone Labs in Murray Hill, New Jersey. UNIX was the dénouement of the MIT
project Multics, which Bell Labs had funded in part and to which Ken Thompson
had been assigned. Multics was one of the earliest complete time-sharing
operating systems, a demonstration platform for a number of early innovations in
time-sharing (multiple simultaneous users on one computer).126 By 1968, Bell
Labs had pulled its supportincluding Ken Thompsonfrom the project and placed
him back in Murray Hill, where he and [pg126] Dennis Ritchie were stuck without a
machine, without any money, and without a project. They were specialists in
operating systems, languages, and machine architecture in a research group that
had no funding or mandate to pursue these areas. Through the creative use of
some discarded equipment, and in relative isolation from the rest of the lab,
Thompson and Ritchie created, in the space of about two years, a complete
operating system, a programming language called C, and a host of tools that are
still in extremely wide use today. The name UNIX (briefly, UNICS) was, among
other things, a puerile pun: a castrated Multics.
The absence of an economic or corporate mandate for Thompsons and Ritchies 370

creativity and labor was not unusual for Bell Labs; researchers were free to work
on just about anything, so long as it possessed some kind of vague relation to the
interests of AT&T. However, the lack of funding for a more powerful machine did
restrict the kind of work Thompson and Ritchie could accomplish. In particular, it
influenced the design of the system, which was oriented toward a super-slim
control unit (a kernel) that governed the basic operation of the machine and an
expandable suite of small, independent tools, each of which did one thing well and
which could be strung together to accomplish more complex and powerful
tasks.127 With the help of Joseph Ossana, Douglas McIlroy, and others, Thompson

121Ibid., 107.
122Campbell-Kelly and Aspray, Computer, 203-5.
123Ultimately, the Department of Justice case against IBM used bundling as evidence of monopolistic
behavior, in addition to claims about the creation of so-called Plug Compatible Machines, devices
that were reverse-engineered by meticulously constructing both the mechanical interface and the
software that would communicate with IBM mainframes. See Franklin M. Fischer, Folded, Spindled,
and Mutilated; Brock, The Second Information Revolution.
124The story of this project and the lessons Brooks learned are the subject of one of the most famous
software-development handbooks, The Mythical Man-Month, by Frederick Brooks.
125The computer industry has always relied heavily on trade secret, much less so on patent and
copyright. Trade secret also produces its own form of order, access, and circulation, which was
carried over into the early software industry as well. See Kidder, The Soul of a New Machine for a
classic account of secrecy and competition in the computer industry.
126On time sharing, see Lee et al., ”Project MAC.” Multics makes an appearance in nearly all histories
of computing, the best resource by far being Tom van Vlecks Web site ⌜ http://www.multicians.org/ ⌟ .
127Some widely admired technical innovations (many of which were borrowed from Multics) include:

Two Bits Christopher M. Kelty 98

http://www.multicians.org/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

and Ritchie eventually managed to agitate for a new PDP-11/20 based not on the
technical merits of the UNIX operating system itself, but on its potential
applications, in particular, those of the text-preparation group, who were
interested in developing tools for formatting, typesetting, and printing, primarily
for the purpose of creating patent applications, which was, for Bell Labs, and for
AT&T more generally, obviously a laudable goal.128

UNIX was unique for many technical reasons, but also for a specific economic 371

reason: it was never quite academic and never quite commercial. Martin
Campbell-Kelly notes that UNIX was a ”non-proprietary operating system of major
significance.”129 Kellys use of ”non-proprietary” is not surprising, but it is incorrect.
Although business-speak regularly opposed open to proprietary throughout the
1980s and early 1990s (and UNIX was definitely the former), Kellys slip marks
clearly the confusion between software ownership and software distribution that
permeates both popular and academic understandings. UNIX was indeed
proprietaryit was copyrighted and wholly owned by Bell Labs and in turn by
Western Electric [pg127] and AT&Tbut it was not exactly commercialized or marketed
by them. Instead, AT&T allowed individuals and corporations to install UNIX and to
create UNIX-like derivatives for very low licensing fees. Until about 1982, UNIX was
licensed to academics very widely for a very small sum: usually royalty-free with a
minimal service charge (from about $150 to $800).130 The conditions of this
license allowed researchers to do what they liked with the software so long as they
kept it secret: they could not distribute or use it outside of their university labs (or
use it to create any commercial product or process), nor publish any part of it. As a
result, throughout the 1970s UNIX was developed both by Thompson and Ritchie
inside Bell Labs and by users around the world in a relatively informal manner. Bell
Labs followed such a liberal policy both because it was one of a small handful of
industry-academic research and development centers and because AT&T was a
government monopoly that provided phone service to the country and was
therefore forbidden to directly enter the computer software market.131

Being on the border of business and academia meant that UNIX was, on the one 372

hand, shielded from the demands of management and markets, allowing it to
achieve the conceptual integrity that made it so appealing to designers and

the hierarchical file system, the command shell for interacting with the system; the decision to treat
everything, including external devices, as the same kind of entity (a file), the ”pipe” operator which
allowed the output of one tool to be ”piped” as input to another tool, facilitating the easy creation of
complex tasks from simple tools.
128Salus, A Quarter Century of UNIX, 33-37.
129Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog, 143.
130Ritchies Web site contains a copy of a 1974 license
(⌜ http://cm.bell-labs.com/cm/cs/who/dmr/licenses.html ⌟) and a series of ads that exemplify the uneasy
positioning of UNIX as a commercial product (⌜ http://cm.bell-labs.com/cm/cs/who/dmr/unixad.html ⌟).
According to Don Libes and Sandy Ressler, ”The original licenses were source licenses. . . .
[C]ommercial institutions paid fees on the order of $20,000. If you owned more than one machine,
you had to buy binary licenses for every additional machine [i.e., you were not allowed to copy the
source and install it] you wanted to install UNIX on. They were fairly pricey at $8000, considering
you couldnt resell them. On the other hand, educational institutions could buy source licenses for
several hundred dollarsjust enough to cover Bell Labs administrative overhead and the cost of the
tapes” (Life with UNIX, 20-21).
131According to Salus, this licensing practice was also a direct result of Judge Thomas Meaneys 1956
antitrust consent decree which required AT&T to reveal and to license its patents for nominal fees (A
Quarter Century of UNIX, 56); see also Brock, The Second Information Revolution, 116-20.

Two Bits Christopher M. Kelty 99

http://cm.bell-labs.com/cm/cs/who/dmr/licenses.html
http://cm.bell-labs.com/cm/cs/who/dmr/unixad.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

academics. On the other, it also meant that AT&T treated it as a potential product
in the emerging software industry, which included new legal questions from a
changing intellectual-property regime, novel forms of marketing and distribution,
and new methods of developing, supporting, and distributing software.
Despite this borderline status, UNIX was a phenomenal success. The reasons why 373

UNIX was so popular are manifold; it was widely admired aesthetically, for its size,
and for its clever design and tools. But the fact that it spread so widely and quickly
is testament also to the existing community of eager computer scientists and
engineers (and a few amateurs) onto which it was bootstrapped, users for whom a
powerful, flexible, low-cost, modifiable, and fast operating system was a revelation
of sorts. It was an obvious alternative to the complex, poorly documented, buggy
operating systems that routinely shipped standard with the machines that
universities and research organizations purchased. ”It worked,” in other
words.
A key feature of the popularity of UNIX was the inclusion of the source code. When 374

Bell Labs licensed UNIX, they usually provided a tape that contained the
documentation (i.e., documentation that [pg128] was part of the system, not a paper
technical manual external to it), a binary version of the software, and the source
code for the software. The practice of distributing the source code encouraged
people to maintain it, extend it, document itand to contribute those changes to
Thompson and Ritchie as well. By doing so, users developed an interest in
maintaining and supporting the project precisely because it gave them an
opportunity and the tools to use their computer creatively and flexibly. Such a
globally distributed community of users organized primarily by their interest in
maintaining an operating system is a precursor to the recursive public, albeit
confined to the world of computer scientists and researchers with access to still
relatively expensive machines. As such, UNIX was not only a widely shared piece
of quasi-commercial software (i.e., distributed in some form other than through a
price-based retail market), but also the first to systematically include the source
code as part of that distribution as well, thus appealing more to academics and
engineers.132

Throughout the 1970s, the low licensing fees, the inclusion of the source code, and 375

its conceptual integrity meant that UNIX was ported to a remarkable number of
other machines. In many ways, academics found it just as appealing, if not more,
to be involved in the creation and improvement of a cutting-edge system by
licensing and porting the software themselves, rather than by having it provided to
them, without the source code, by a company. Peter Salus, for instance, suggests
that people experienced the lack of support from Bell Labs as a kind of spur to
develop and share their own fixes. The means by which source code was shared,
and the norms and practices of sharing, porting, forking, and modifying source
code were developed in this period as part of the development of UNIX itselfthe
technical design of the system facilitates and in some cases mirrors the norms and
practices of sharing that developed: operating systems and social

132Even in computer science, source code was rarely formally shared, and more likely presented in
the form of theorems and proofs, or in various idealized higher-level languages such as Donald
Knuths MIX language for presenting algorithms (Knuth, The Art of Computer Programming). Snippets
of actual source code are much more likely to be found in printed form in handbooks, manuals,
how-to guides, and other professional publications aimed at training programmers.

Two Bits Christopher M. Kelty 100

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

systems.133

Sharing UNIX 376

Over the course of 1974-77 the spread and porting of UNIX was phenomenal for an 377

operating system that had no formal system of distribution and no official support
from the company that owned it, and that evolved in a piecemeal way through the
contributions [pg129] of people from around the world. By 1975, a users group had
developed: USENIX.134 UNIX had spread to Canada, Europe, Australia, and Japan,
and a number of new tools and applications were being both independently
circulated and, significantly, included in the frequent releases by Bell Labs itself.
All during this time, AT&Ts licensing department sought to find a balance between
allowing this circulation and innovation to continue, and attempting to maintain
trade-secret status for the software. UNIX was, by 1980, without a doubt the most
widely and deeply understood trade secret in computing history.
The manner in which the circulation of and contribution to UNIX occurred is not 378

well documented, but it includes both technical and pedagogical forms of sharing.
On the technical side, distribution took a number of forms, both in resistance to
AT&Ts attempts to control it and facilitated by its unusually liberal licensing of the
software. On the pedagogical side, UNIX quickly became a paradigmatic object for
computer-science students precisely because it was a working operating system
that included the source code and that was simple enough to explore in a
semester or two.
In A Quarter Century of UNIX Salus provides a couple of key stories (from Ken 379

Thompson and Lou Katz) about how exactly the technical sharing of UNIX worked,
how sharing, porting, and forking can be distinguished, and how it was neither
strictly legal nor deliberately illegal in this context. First, from Ken Thompson: ”The
first thing to realize is that the outside world ran on releases of UNIX (V4, V5, V6,
V7) but we did not. Our view was a continuum. V5 was what we had at some point
in time and was probably out of date simply by the activity required to put it in
shape to export. After V6, I was preparing to go to Berkeley to teach for a year. I
was putting together a system to take. Since it was almost a release, I made a diff
with V6 [a tape containing only the differences between the last release and the
one Ken was taking with him]. On the way to Berkeley I stopped by
Urbana-Champaign to keep an eye on Greg Chesson. . . . I left the diff tape there
and I told him that I wouldnt mind if it got around.”135

The need for a magnetic tape to ”get around” marks the difference between the 380

1970s and the present: the distribution of software involved both the material
transport of media and the digital copying of information. The desire to distribute
bug fixes (the ”diff ” tape) resonates with the future emergence of Free Software:

133The simultaneous development of the operating system and the norms for creating, sharing,
documenting, and extending it are often referred to as the ”UNIX philosophy.” It includes the central
idea that one should build on the ideas (software) of others (see Gancarz, The Unix Philosophy and
Linux and the UNIX Philosophy). See also Raymond, The Art of UNIX Programming.
134Bell Labs threatened the nascent UNIX NEWS newsletter with trademark infringement, so
”USENIX” was a concession that harkened back to the original USE users group for DEC machines,
but avoided explicitly using the name UNIX. Libes and Ressler, Life with UNIX, 9.
135Salus, A Quarter Century of Unix, 138.

Two Bits Christopher M. Kelty 101

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

the [pg130] fact that others had fixed problems and contributed them back to
Thompson and Ritchie produced an obligation to see that the fixes were shared as
widely as possible, so that they in turn might be ported to new machines. Bell
Labs, on the other hand, would have seen this through the lens of software
development, requiring a new release, contract renegotiation, and a new license
fee for a new version. Thompsons notion of a ”continuum,” rather than a series of
releases also marks the difference between the idea of an evolving common set of
objects stewarded by multiple people in far-flung locales and the idea of a
shrink-wrapped ”productized” software package that was gaining ascendance as
an economic commodity at the same time. When Thompson says ”the outside
world,” he is referring not only to people outside of Bell Labs but to the way the
world was seen from within Bell Labs by the lawyers and marketers who would
create a new version. For the lawyers, the circulation of source code was a
problem because it needed to be stabilized, not so much for commercial reasons
as for legal onesone license for one piece of software. Distributing updates, fixes,
and especially new tools and additions written by people who were not employed
by Bell Labs scrambled the legal clarity even while it strengthened the technical
quality. Lou Katz makes this explicit.

A large number of bug fixes was collected, and rather than issue them one at a 381

time, a collection tape (”the 50 fixes”) was put together by Ken [the same ”diff
tape,” presumably]. Some of the fixes were quite important, though I dont
remember any in particular. I suspect that a significant fraction of the fixes
were actually done by non-Bell people. Ken tried to send it out, but the lawyers
kept stalling and stalling and stalling. Finally, in complete disgust, someone
”found a tape on Mountain Avenue” [the location of Bell Labs] which had the
fixes. When the lawyers found out about it, they called every licensee and
threatened them with dire consequences if they didnt destroy the tape, after
trying to find out how they got the tape. I would guess that no one would
actually tell them how they came by the tape (I didnt).136

Distributing the fixes involved not just a power struggle between the engineers 382

and management, but was in fact clearly motivated by the fact that, as Katz says,
”a significant fraction of the fixes were done by non-Bell people.” This meant two
things: first, that there was an obvious incentive to return the updated system to
these [pg131] people and to others; second, that it was not obvious that AT&T
actually owned or could claim rights over these fixesor, if they did, they needed to
cover their legal tracks, which perhaps in part explains the stalling and threatening
of the lawyers, who may have been buying time to make a ”legal” version, with
the proper permissions.
The struggle should be seen not as one between the rebel forces of UNIX 383

development and the evil empire of lawyers and managers, but as a struggle
between two modes of stabilizing the object known as UNIX. For the lawyers,
stability implied finding ways to make UNIX look like a product that would meet the
existing legal framework and the peculiar demands of being a regulated monopoly
unable to freely compete with other computer manufacturers; the ownership of
bits and pieces, ideas and contributions had to be strictly accountable. For the
programmers, stability came through redistributing the most up-to-date operating
system and sharing all innovations with all users so that new innovations might
136Ibid., emphasis added.

Two Bits Christopher M. Kelty 102

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

also be portable. The lawyers saw urgency in making UNIX legally stable; the
engineers saw urgency in making UNIX technically stable and compatible with
itself, that is, to prevent the forking of UNIX, the death knell for portability. The
tension between achieving legal stability of the object and promoting its technical
portability and stability is one that has repeated throughout the life of UNIX and its
derivativesand that has ramifications in other areas as well.
The identity and boundaries of UNIX were thus intricately formed through its 384

sharing and distribution. Sharing produced its own form of moral and technical
order. Troubling questions emerged immediately: were the versions that had been
fixed, extended, and expanded still UNIX, and hence still under the control of
AT&T? Or were the differences great enough that something else (not-UNIX) was
emerging? If a tape full of fixes, contributed by non-Bell employees, was circulated
to people who had licensed UNIX, and those fixes changed the system, was it still
UNIX? Was it still UNIX in a legal sense or in a technical sense or both? While these
questions might seem relatively scholastic, the history of the development of UNIX
suggests something far more interesting: just about every possible modification
has been made, legally and technically, but the concept of UNIX has remained
remarkably stable.

Porting UNIX 385

Technical portability accounts for only part of UNIXs success. As a pedagogical 386

resource, UNIX quickly became an indispensable tool for academics around the
world. As it was installed and improved, it was taught and learned. The fact that
UNIX spread first to university computer-science departments, and not to
businesses, government, or nongovernmental organizations, meant that it also
became part of the core pedagogical practice of a generation of programmers and
computer scientists; over the course of the 1970s and 1980s, UNIX came to
exemplify the very concept of an operating system, especially time-shared,
multi-user operating systems. Two stories describe the porting of UNIX from
machines to minds and illustrate the practice as it developed and how it
intersected with the technical and legal attempts to stabilize UNIX as an object:
the story of John Lionss Commentary on Unix 6th Edition and the story of Andrew
Tanenbaums Minix.
The development of a pedagogical UNIX lent a new stability to the concept of UNIX 387

as opposed to its stability as a body of source code or as a legal entity. The porting
of UNIX was so successful that even in cases where a ported version of UNIX
shares none of the same source code as the original, it is still considered UNIX. The
monstrous and promiscuous nature of UNIX is most clear in the stories of Lions and
Tanenbaum, especially when contrasted with the commercial, legal, and technical
integrity of something like Microsoft Windows, which generally exists in only a
small number of forms (NT, ME, XP, 95, 98, etc.), possessing carefully controlled
source code, immured in legal protection, and distributed only through sales and
service packs to customers or personal-computer manufacturers. While Windows
is much more widely used than UNIX, it is far from having become a paradigmatic
pedagogical object; its integrity is predominantly legal, not technical or
pedagogical. Or, in pedagogical terms, Windows is to fish as UNIX is to fishing
lessons.

Two Bits Christopher M. Kelty 103

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Lionss Commentary is also known as ”the most photocopied document in 388

computer science.” Lions was a researcher and senior lecturer at the University of
New South Wales in the early 1970s; after reading the first paper by Ritchie and
Thompson on UNIX, he convinced his colleagues to purchase a license from
AT&T.137 Lions, like many researchers, was impressed by the quality of the system,
and he was, like all of the UNIX users of that period, intimately [pg133] familiar with
the UNIX source codea necessity in order to install, run, or repair it. Lions began
using the system to teach his classes on operating systems, and in the course of
doing so he produced a textbook of sorts, which consisted of the entire source
code of UNIX version 6 (V6), along with elaborate, line-by-line commentary and
explanation. The value of this textbook can hardly be underestimated. Access to
machines and software that could be used to understand how a real system
worked was very limited: ”Real computers with real operating systems were locked
up in machine rooms and committed to processing twenty four hours a day. UNIX
changed that.”138 Berny Goodheart, in an appreciation of Lionss Commentary,
reiterated this sense of the practical usefulness of the source code and
commentary: ”It is important to understand the significance of Johns work at that
time: for students studying computer science in the 1970s, complex issues such
as process scheduling, security, synchronization, file systems and other concepts
were beyond normal comprehension and were extremely difficult to teachthere
simply wasnt anything available with enough accessibility for students to use as a
case study. Instead a students discipline in computer science was earned by
punching holes in cards, collecting fan-fold paper printouts, and so on. Basically, a
computer operating system in that era was considered to be a huge chunk of
inaccessible proprietary code.”139

Lionss commentary was a unique document in the world of computer science, 389

containing a kind of key to learning about a central component of the computer,
one that very few people would have had access to in the 1970s. It shows how
UNIX was ported not only to machines (which were scarce) but also to the minds of
young researchers and student programmers (which were plentiful). Several
generations of both academic computer scientists and students who went on to
work for computer or software corporations were trained on photocopies of UNIX
source code, with a whiff of toner and illicit circulation: a distributed operating
system in the textual sense.
Unfortunately, Commentary was also legally restricted in its distribution. AT&T and 390

Western Electric, in hopes that they could maintain trade-secret status for UNIX,
allowed only very limited circulation of the book. At first, Lions was given
permission to distribute single copies only to people who already possessed a
license for UNIX V6; later Bell Labs itself would distribute Commentary [pg134]

briefly, but only to licensed users, and not for sale, distribution, or copying.
Nonetheless, nearly everyone seems to have possessed a dog-eared,
nth-generation copy. Peter Reintjes writes, ”We soon came into possession of what
looked like a fifth generation photocopy and someone who shall remain nameless
spent all night in the copier room spawning a sixth, an act expressly forbidden by
a carefully worded disclaimer on the first page. Four remarkable things were
137Ken Thompson and Dennis Ritchie, ”The Unix Operating System,” Bell Systems Technical Journal
(1974).
138Greg Rose, quoted in Lions, Commentary, n.p.
139Lions, Commentary, n.p.

Two Bits Christopher M. Kelty 104

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

happening at the same time. One, we had discovered the first piece of software
that would inspire rather than annoy us; two, we had acquired what amounted to a
literary criticism of that computer software; three, we were making the single most
significant advancement of our education in computer science by actually reading
an entire operating system; and four, we were breaking the law.”140

Thus, these generations of computer-science students and academics shared a 391

secreta trade secret become open secret. Every student who learned the
essentials of the UNIX operating system from a photocopy of Lionss commentary,
also learned about AT&Ts attempt to control its legal distribution on the front cover
of their textbook. The parallel development of photocopying has a nice resonance
here; together with home cassette taping of music and the introduction of the
video-cassette recorder, photocopying helped drive the changes to copyright law
adopted in 1976.
Thirty years later, and long after the source code in it had been completely 392

replaced, Lionss Commentary is still widely admired by geeks. Even though Free
Software has come full circle in providing students with an actual operating system
that can be legally studied, taught, copied, and implemented, the kind of ”literary
criticism” that Lionss work represents is still extremely rare; even reading obsolete
code with clear commentary is one of the few ways to truly understand the design
elements and clever implementations that made the UNIX operating system so
different from its predecessors and even many of its successors, few, if any of
which have been so successfully ported to the minds of so many students.
Lionss Commentary contributed to the creation of a worldwide community of 393

people whose connection to each other was formed by a body of source code, both
in its implemented form and in its textual, photocopied form. This nascent
recursive public not only understood itself as belonging to a technical elite which
was constituted by its creation, understanding, and promotion of a particular [pg135]

technical tool, but also recognized itself as ”breaking the law,” a community
constituted in opposition to forms of power that governed the circulation,
distribution, modification, and creation of the very tools they were learning to
make as part of their vocation. The material connection shared around the world
by UNIX-loving geeks to their source code is not a mere technical experience, but
a social and legal one as well.
Lions was not the only researcher to recognize that teaching the source code was 394

the swiftest route to comprehension. The other story of the circulation of source
code concerns Andrew Tanenbaum, a well-respected computer scientist and an
author of standard textbooks on computer architecture, operating systems, and
networking.141 In the 1970s Tanenbaum had also used UNIX as a teaching tool in
classes at the Vrije Universiteit, in Amsterdam. Because the source code was
distributed with the binary code, he could have his students explore directly the
implementations of the system, and he often used the source code and the Lions
book in his classes. But, according to his Operating Systems: Design and
Implementation (1987), ”When AT&T released Version 7 [ca. 1979], it began to
realize that UNIX was a valuable commercial product, so it issued Version 7 with a
license that prohibited the source code from being studied in courses, in order to
140Ibid.
141Tanenbaums two most famous textbooks are Operating Systems and Computer Networks, which
have seen three and four editions respectively.

Two Bits Christopher M. Kelty 105

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

avoid endangering its status as a trade secret. Many universities complied by
simply dropping the study of UNIX, and teaching only theory” (13). For Tanenbaum,
this was an unacceptable alternativebut so, apparently, was continuing to break
the law by teaching UNIX in his courses. And so he proceeded to create a
completely new UNIX-like operating system that used not a single line of AT&T
source code. He called his creation Minix. It was a stripped-down version intended
to run on personal computers (IBM PCs), and to be distributed along with the
textbook Operating Systems, published by Prentice Hall.142

Minix became as widely used in the 1980s as a teaching tool as Lionss source code 395

had been in the 1970s. According to Tanenbaum, the Usenet group comp.os.minix
had reached 40,000 members by the late 1980s, and he was receiving constant
suggestions for changes and improvements to the operating system. His own
commitment to teaching meant that he incorporated few of these suggestions, an
effort to keep the system simple enough to be printed in a textbook and
understood by undergraduates. Minix [pg136] was freely available as source code,
and it was a fully functioning operating system, even a potential alternative to
UNIX that would run on a personal computer. Here was a clear example of the
conceptual integrity of UNIX being communicated to another generation of
computer-science students: Tanenbaums textbook is not called ”UNIX Operating
Systems”it is called Operating Systems. The clear implication is that UNIX
represented the clearest example of the principles that should guide the creation
of any operating system: it was, for all intents and purposes, state of the art even
twenty years after it was first conceived.
Minix was not commercial software, but nor was it Free Software. It was 396

copyrighted and controlled by Tanenbaums publisher, Prentice Hall. Because it
used no AT&T source code, Minix was also legally independent, a legal object of its
own. The fact that it was intended to be legally distinct from, yet conceptually true
to UNIX is a clear indication of the kinds of tensions that govern the creation and
sharing of source code. The ironic apotheosis of Minix as the pedagogical gold
standard for studying UNIX came in 1991-92, when a young Linus Torvalds created
a ”fork” of Minix, also rewritten from scratch, that would go on to become the
paradigmatic piece of Free Software: Linux. Tanenbaums purpose for Minix was
that it remain a pedagogically useful operating systemsmall, concise, and
illustrativewhereas Torvalds wanted to extend and expand his version of Minix to
take full advantage of the kinds of hardware being produced in the 1990s. Both,
however, were committed to source-code visibility and sharing as the swiftest
route to complete comprehension of operating-systems principles.

Forking UNIX 397

Tanenbaums need to produce Minix was driven by a desire to share the source 398

code of UNIX with students, a desire AT&T was manifestly uncomfortable with and
which threatened the trade-secret status of their property. The fact that Minix
might be called a fork of UNIX is a key aspect of the political economy of operating
systems and social systems. Forking generally refers to the creation of new,
142Tanenbaum was not the only person to follow this route. The other acknowledged giant in the
computer-science textbook world, Douglas Comer, created Xinu and Xinu-PC (UNIX spelled
backwards) in Operating Systems Design in 1984.

Two Bits Christopher M. Kelty 106

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

modified source code from an original base of source code, resulting in two distinct
programs with the same parent. Whereas the modification of an engine results
only in a modified engine, the [pg137] modification of source code implies
differentiation and reproduction, because of the ease with which it can be
copied.
How could Minixa complete rewritestill be considered the same object? Considered 399

solely from the perspective of trade-secret law, the two objects were distinct,
though from the perspective of copyright there was perhaps a case for
infringement, although AT&T did not rely on copyright as much as on trade secret.
From a technical perspective, the functions and processes that the software
accomplishes are the same, but the means by which they are coded to do so are
different. And from a pedagogical standpoint, the two are identicalthey exemplify
certain core features of an operating system (file-system structure, memory
paging, process management)all the rest is optimization, or bells and whistles.
Understanding the nature of forking requires also that UNIX be understood from a
social perspective, that is, from the perspective of an operating system created
and modified by user-developers around the world according to particular and
partial demands. It forms the basis for the emergence of a robust recursive
public.
One of the more important instances of the forking of UNIXs perambulatory source 400

code and the developing community of UNIX co-developers is the story of the
Berkeley Software Distribution and its incorporation of the TCP/IP protocols. In
1975 Ken Thompson took a sabbatical in his hometown of Berkeley, California,
where he helped members of the computer-science department with their
installations of UNIX, arriving with V6 and the ”50 bug fixes” diff tape. Ken had
begun work on a compiler for the Pascal programming language that would run on
UNIX, and this work was taken up by two young graduate students: Bill Joy and
Chuck Hartley. (Joy would later co-found Sun Microsystems, one of the most
successful UNIX-based workstation companies in the history of the industry.)
Joy, above nearly all others, enthusiastically participated in the informal 401

distribution of source code. With a popular and well-built Pascal system, and a new
text editor called ex (later vi), he created the Berkeley Software Distribution (BSD),
a set of tools that could be used in combination with the UNIX operating system.
They were extensions to the original UNIX operating system, but not a complete,
rewritten version that might replace it. By all accounts, Joy served as a kind of
one-man software-distribution house, making tapes and posting them, taking
orders and cashing checksall in [pg138] addition to creating software.143 UNIX users
around the world soon learned of this valuable set of extensions to the system, and
before long, many were differentiating between AT&T UNIX and BSD UNIX.
According to Don Libes, Bell Labs allowed Berkeley to distribute its extensions to 402

UNIX so long as the recipients also had a license from Bell Labs for the original
UNIX (an arrangement similar to the one that governed Lionss Commentary).144
From about 1976 until about 1981, BSD slowly became an independent
distributionindeed, a complete version of UNIXwell-known for the vi editor and the
Pascal compiler, but also for the addition of virtual memory and its implementation

143McKusick, ”Twenty Years of Berkeley Unix,” 32.
144Libes and Ressler, Life with UNIX, 16-17.

Two Bits Christopher M. Kelty 107

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

on DECs VAX machines.145 It should be clear that the unusual quasi-commercial
status of AT&Ts UNIX allowed for this situation in a way that a fully commercial
computer corporation would never have allowed. Consider, for instance, the fact
that many UNIX usersstudents at a university, for instancecould not essentially
know whether they were using an AT&T product or something called BSD UNIX
created at Berkeley. The operating system functioned in the same way and, except
for the presence of copyright notices that occasionally flashed on the screen, did
not make any show of asserting its brand identity (that would come later, in the
1980s). Whereas a commercial computer manufacturer would have allowed
something like BSD only if it were incorporated into and distributed as a single,
marketable, and identifiable product with a clever name, AT&T turned something
of a blind eye to the proliferation and spread of AT&T UNIX and the result were
forks in the project: distinct bodies of source code, each an instance of something
called UNIX.
As BSD developed, it gained different kinds of functionality than the UNIX from 403

which it was spawned. The most significant development was the inclusion of code
that allowed it to connect computers to the Arpanet, using the TCP/IP protocols
designed by Vinton Cerf and Robert Kahn. The TCP/IP protocols were a key feature
of the Arpanet, overseen by the Information Processing and Techniques Office
(IPTO) of the Defense Advanced Research Projects Agency (DARPA) from its
inception in 1967 until about 1977. The goal of the protocols was to allow different
networks, each with its own machines and administrative boundaries, to be
connected to each other.146 Although there is a common heritagein the form of J.
C. R. Lickliderwhich ties the imagination of the time-sharing operating [pg139]

system to the creation of the ”galactic network,” the Arpanet initially developed
completely independent of UNIX.147 As a time-sharing operating system, UNIX was
meant to allow the sharing of resources on a single computer, whether mainframe
or minicomputer, but it was not initially intended to be connected to a network of
other computers running UNIX, as is the case today.148 The goal of Arpanet, by
contrast, was explicitly to achieve the sharing of resources located on diverse
machines across diverse networks.
To achieve the benefits of TCP/IP, the resources needed to be implemented in all of 404

the different operating systems that were connected to the Arpanetwhatever
operating system and machine happened to be in use at each of the nodes.

145A recent court case between the Utah-based SCOthe current owner of the legal rights to the
original UNIX source codeand IBM raised yet again the question of how much of the original UNIX
source code exists in the BSD distribution. SCO alleges that IBM (and Linus Torvalds) inserted
SCO-owned UNIX source code into the Linux kernel. However, the incredibly circuitous route of the
”original” source code makes these claims hard to ferret out: it was developed at Bell Labs, licensed
to multiple universities, used as a basis for BSD, sold to an earlier version of the company SCO (then
known as the Santa Cruz Operation), which created a version called Xenix in cooperation with
Microsoft. See the diagram by Eric Lévénez at ⌜ http://www.levenez.com/unix/ ⌟ . For more detail on this
case, see www.groklaw.com.
146See Vinton G. Cerf and Robert Kahn, ”A Protocol for Packet Network Interconnection.” For the
history, see Abbate, Inventing the Internet; Norberg and ONeill, A History of the Information
Techniques Processing Office. Also see chapters 1 and 5 herein for more detail on the role of these
protocols and the RFC process.
147Waldrop, The Dream Machine, chaps. 5 and 6.
148The exception being a not unimportant tool called Unix to Unix Copy Protocol, or uucp, which was
widely used to transmit data by phone and formed the bases for the creation of the Usenet. See
Hauben and Hauben, Netizens.

Two Bits Christopher M. Kelty 108

http://www.levenez.com/unix/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

However, by 1977, the original machines used on the network were outdated and
increasingly difficult to maintain and, according to Kirk McKusick, the greatest
expense was that of porting the old protocol software to new machines. Hence,
IPTO decided to pursue in part a strategy of achieving coordination at the
operating-system level, and they chose UNIX as one of the core platforms on
which to standardize. In short, they had seen the light of portability. In about 1978
IPTO granted a contract to Bolt, Beranek, and Newman (BBN), one of the original
Arpanet contractors, to integrate the TCP/IP protocols into the UNIX operating
system.
But then something odd happened, according to Salus: ”An initial prototype was 405

done by BBN and given to Berkeley. Bill [Joy] immediately started hacking on it
because it would only run an Ethernet at about 56K/sec utilizing 100% of the CPU
on a 750. . . . Bill lobotomized the code and increased its performance to on the
order of 700KB/sec. This caused some consternation with BBN when they came in
with their finished version, and Bill wouldnt accept it. There were battles for years
after, about which version would be in the system. The Berkeley version ultimately
won.”149

Although it is not clear, it appears BBN intended to give Joy the code in order to 406

include it in his BSD version of UNIX for distribution, and that Joy and collaborators
intended to cooperate with Rob Gurwitz of BBN on a final implementation, but
Berkeley insisted on ”improving” the code to make it perform more to their needs,
and BBN apparently dissented from this.150 One result of this scuffle between BSD
and BBN was a genuine fork: two bodies of code that did the same thing,
competing with each other to become the standard UNIX implementation of TCP/IP.
Here, then, was a [pg140] case of sharing source code that led to the creation of
different versions of softwaresharing without collaboration. Some sites used the
BBN code, some used the Berkeley code.
Forking, however, does not imply permanent divergence, and the continual 407

improvement, porting, and sharing of software can have odd consequences when
forks occur. On the one hand, there are particular pieces of source code: they
must be identifiable and exact, and prepended with a copyright notice, as was the
case of the Berkeley code, which was famously and vigorously policed by the
University of California regents, who allowed for a very liberal distribution of BSD
code on the condition that the copyright notice was retained. On the other hand,
there are particular named collections of code that work together (e.g., UNIX, or
DARPA-approved UNIX, or later, Certified Open Source [sm]) and are often
identified by a trademark symbol intended, legally speaking, to differentiate
products, not to assert ownership of particular instances of a product.
The odd consequence is this: Bill Joys specific TCP/IP code was incorporated not 408

only into BSD UNIX, but also into other versions of UNIX, including the UNIX
distributed by AT&T (which had originally licensed UNIX to Berkeley) with the
Berkeley copyright notice removed. This bizarre, tangled bank of licenses and
code resulted in a famous suit and countersuit between AT&T and Berkeley, in

149Salus, A Quarter Century of UNIX, 161.
150TCP/IP Digest 1.6 (11 November 1981) contains Joys explanation of Berkeleys intentions
(Message-ID:
⌜anews.aucbvax.5236 ⌟).

Two Bits Christopher M. Kelty 109

http://groups.google.com/groups?selm=anews.aucbvax.5236
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

which the intricacies of this situation were sorted out.151 An innocent bystander,
expecting UNIX to be a single thing, might be surprised to find that it takes
different forms for reasons that are all but impossible to identify, but the cause of
which is clear: different versions of sharing in conflict with one another; different
moral and technical imaginations of order that result in complex entanglements of
value and code.
The BSD fork of UNIX (and the subfork of TCP/IP) was only one of many to come. 409

By the early 1980s, a proliferation of UNIX forks had emerged and would be
followed shortly by a very robust commercialization. At the same time, the
circulation of source code started to slow, as corporations began to compete by
adding features and creating hardware specifically designed to run UNIX (such as
the Sun Sparc workstation and the Solaris operating system, the result of Joys
commercialization of BSD in the 1980s). The question of how to make all of these
versions work together eventually became the subject of the open-systems
discussions that would dominate the workstation and networking sectors of the
computer [pg141] market from the early 1980s to 1993, when the dual success of
Windows NT and the arrival of the Internet into public consciousness changed the
fortunes of the UNIX industry.
A second, and more important, effect of the struggle between BBN and BSD was 410

simply the widespread adoption of the TCP/IP protocols. An estimated 98 percent
of computer-science departments in the United States and many such
departments around the world incorporated the TCP/IP protocols into their UNIX
systems and gained instant access to Arpanet.152 The fact that this occurred when
it did is important: a few years later, during the era of the commercialization of
UNIX, these protocols might very well not have been widely implemented (or more
likely implemented in incompatible, nonstandard forms) by manufacturers,
whereas before 1983, university computer scientists saw every benefit in doing so
if it meant they could easily connect to the largest single computer network on the
planet. The large, already functioning, relatively standard implementation of
TCP/IP on UNIX (and the ability to look at the source code) gave these protocols a
tremendous advantage in terms of their survival and success as the basis of a
global and singular network.

Conclusion 411

The UNIX operating system is not just a technical achievement; it is the creation of 412

a set of norms for sharing source code in an unusual environment:
quasi-commercial, quasi-academic, networked, and planetwide. Sharing UNIX
source code has taken three basic forms: porting source code (transferring it from
one machine to another); teaching source code, or ”porting” it to students in a
pedagogical setting where the use of an actual working operating system vastly
facilitates the teaching of theory and concepts; and forking source code
(modifying the existing source code to do something new or different). This play of
proliferation and differentiation is essential to the remarkably stable identity of

151See Andrew Leonard, ”BSD Unix: Power to the People, from the Code,” Salon, 16 May 2000,
⌜ http://archive.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/ ⌟ .
152Norberg and ONeill, A History of the Information Techniques Processing Office, 184-85. They cite
Comer, Internetworking with TCP/IP, 6 for the figure.

Two Bits Christopher M. Kelty 110

http://archive.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

UNIX, but that identity exists in multiple forms: technical (as a functioning,
self-compatible operating system), legal (as a license-circumscribed version
subject to intellectual property and commercial law), and pedagogical (as a
conceptual exemplar, the paradigm of an operating system). Source code shared
in this manner is essentially unlike any other kind of [pg142] source code in the world
of computers, whether academic or commercial. It raises troubling questions
about standardization, about control and audit, and about legitimacy that haunts
not only UNIX but the Internet and its various ”open” protocols as well.
Sharing source code in Free Software looks the way it does today because of UNIX. 413

But UNIX looks the way it does not because of the inventive genius of Thompson
and Ritchie, or the marketing and management brilliance of AT&T, but because
sharing produces its own kind of order: operating systems and social systems. The
fact that geeks are wont to speak of ”the UNIX philosophy” means that UNIX is not
just an operating system but a way of organizing the complex relations of life and
work through technical means; a way of charting and breaching the boundaries
between the academic, the aesthetic, and the commercial; a way of implementing
ideas of a moral and technical order. Whats more, as source code comes to include
more and more of the activities of everyday communication and creationas it
comes to replace writing and supplement thinkingthe genealogy of its portability
and the history of its forking will illuminate the kinds of order emerging in
practices and technologies far removed from operating systemsbut tied intimately
to the UNIX philosophy.

Two Bits Christopher M. Kelty 111

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

5.Conceiving Open Systems 414

The great thing about standards is that there are so many to choose from.153 415

Openness is an unruly concept. While free tends toward ambiguity (free as in 416

speech, or free as in beer?), open tends toward obfuscation. Everyone claims to be
open, everyone has something to share, everyone agrees that being open is the
obvious thing to doafter all, openness is the other half of ”open source”but for all
its obviousness, being ”open” is perhaps the most complex component of Free
Software. It is never quite clear whether being open is a means or an end. Worse,
the opposite of open in this case (specifically, ”open systems”) is not closed, but
”proprietary”signaling the complicated imbrication of the technical, the legal, and
the commercial.
In this chapter I tell the story of the contest over the meaning of ”open systems” 417

from 1980 to 1993, a contest to create a simultaneously moral and technical
infrastructure within the computer [pg144] industry.154 The infrastructure in question
includes technical componentsthe UNIX operating system and the TCP/IP protocols
of the Internet as open systemsbut it also includes ”moral” components, including
the demand for structures of fair and open competition, antimonopoly and open
markets, and open-standards processes for high-tech networked computers and
software in the 1980s.155 By moral, I mean imaginations of the proper order of
collective political and commercial action; referring to much more than simply how
individuals should act, moral signifies a vision of how economy and society should
be ordered collectively.
The open-systems story is also a story of the blind spot of open systemsin that 418

blind spot is intellectual property. The story reveals a tension between
incompatible moral-technical orders: on the one hand, the promise of multiple
manufacturers and corporations creating interoperable components and selling
them in an open, heterogeneous market; on the other, an intellectual-property
system that encouraged jealous guarding and secrecy, and granted monopoly
status to source code, designs, and ideas in order to differentiate products and
promote competition. The tension proved irresolvable: without shared source
code, for instance, interoperable operating systems are impossible. Without
interoperable operating systems, internetworking and portable applications are
impossible. Without portable applications that can run on any system, open
markets are impossible. Without open markets, monopoly power reigns.
Standardization was at the heart of the contest, but by whom and by what means 419

was never resolved. The dream of open systems, pursued in an entirely

153Quoted in Libes and Ressler, Life with UNIX, 67, and also in Critchley and Batty, Open Systems, 17.
I first heard it in an interview with Sean Doyle in 1998.
154Moral in this usage signals the ”moral and social order” I explored through the concept of social
imaginaries in chapter 1. Or, in the Scottish Enlightenment sense of Adam Smith, it points to the
right organization and relations of exchange among humans.
155There is, of course, a relatively robust discourse of open systems in biology, sociology, systems
theory, and cybernetics; however, that meaning of open systems is more or less completely distinct
from what openness and open systems came to mean in the computer industry in the period
book-ended by the arrivals of the personal computer and the explosion of the Internet (ca. 1980-93).
One relevant overlap between these two meanings can be found in the work of Carl Hewitt at the
MIT Media Lab and in the interest in ”agorics” taken by K. Eric Drexler, Bernardo Huberman, and
Mark S. Miller. See Huberman, The Ecology of Computation.

Two Bits Christopher M. Kelty 112

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

unregulated industry, resulted in a complicated experiment in novel forms of
standardization and cooperation. The creation of a ”standard” operating system
based on UNIX is the story of a failure, a kind of ”figuring out” gone haywire, which
resulted in huge consortia of computer manufacturers attempting to work together
and compete with each other at the same time. Meanwhile, the successful
creation of a ”standard” networking protocolknown as the Open Systems
Interconnection Reference Model (OSI)is a story of failure that hides a larger
success; OSI was eclipsed in the same period by the rapid and ad hoc adoption of
the Transmission Control Protocol/Internet Protocol (TCP/IP), which used a radically
different standardization process and which succeeded for a number of surprising
reasons, allowing the Internet [pg145] to take the form it did in the 1990s and
ultimately exemplifying the moral-technical imaginary of a recursive publicand one
at the heart of the practices of Free Software.
The conceiving of openness, which is the central plot of these two stories, has 420

become an essential component of the contemporary practice and power of Free
Software. These early battles created a kind of widespread readiness for Free
Software in the 1990s, a recognition of Free Software as a removal of open
systems blind spot, as much as an exploitation of its power. The geek ideal of
openness and a moral-technical order (the one that made Napster so significant an
event) was forged in the era of open systems; without this concrete historical
conception of how to maintain openness in technical and moral terms, the
recursive public of geeks would be just another hierarchical closed organizationa
corporation manquéand not an independent public serving as a check on the kinds
of destructive power that dominated the open-systems contest.

Hopelessly Plural 421

Big iron, silos, legacy systems, turnkey systems, dinosaurs, mainframes: with the 422

benefit of hindsight, the computer industry of the 1960s to the 1980s appears to
be backward and closed, to have literally painted itself into a corner, as an early
Intel advertisement suggests (figure 3). Contemporary observers who show
disgust and impatience with the form that computers took in this era are without
fail supporters of open systems and opponents of proprietary systems that ”lock
in” customers to specific vendors and create artificial demands for support,
integration, and management of resources. Open systems (were it allowed to
flourish) would solve all these problems.
Given the promise of a ”general-purpose computer,” it should seem ironic at best 423

that open systems needed to be created. But the general-purpose computer never
came into being. We do not live in the world of The Computer, but in a world of
computers: myriad, incompatible, specific machines. The design of specialized
machines (or ”architectures”) was, and still is, key to a competitive industry in
computers. It required CPUs and components and associated software that could
be clearly qualified and marketed [pg146] [pg147] as distinct products: the DEC PDP-11
or the IBM 360 or the CDC 6600. On the Fordist model of automobile production,
the computer industrys mission was to render desired functions (scientific
calculation, bookkeeping, reservations management) in a large box with a button
on it (or a very large number of buttons on increasingly smaller boxes). Despite
the theoretical possibility, such computers were not designed to do anything, but,

Two Bits Christopher M. Kelty 113

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

rather, to do specific kinds of calculations exceedingly well. They were objects
customized to particular markets.
2bits_05_03-100.png,w619h972 [* Open systems is the solution to painting 424

yourself into a corner. Intel advertisement, Wall Street Journal, 30 May 1984.
]
The marketing strategy was therefore extremely stable from about 1955 to about 425

1980: identify customers with computing needs, build a computer to serve them,
provide them with all of the equipment, software, support, or peripherals they
need to do the joband charge a large amount. Organizationally speaking, it was an
industry dominated by ”IBM and the seven dwarfs”: Hewlett-Packard, Honeywell,
Control Data, General Electric, NCR, RCA, Univac, and Burroughs, with a few
upstarts like DEC in the wings.
By the 1980s, however, a certain inversion had happened. Computers had 426

become smaller and faster; there were more and more of them, and it was
becoming increasingly clear to the ”big iron” manufacturers that what was most
valuable to users was the information they generated, not the machines that did
the generating. Such a realization, so the story goes, leads to a demand for
interchangeability, interoperability, information sharing, and networking. It also
presents the nightmarish problems of conversion between a bewildering,
heterogeneous, and rapidly growing array of hardware, software, protocols, and
systems. As one conference paper on the subject of evaluating open systems put
it, ”At some point a large enterprise will look around and see a huge amount of
equipment and software that will not work together. Most importantly, the
information stored on these diverse platforms is not being shared, leading to
unnecessary duplication and lost profit.”156

Open systems emerged in the 1980s as the name of the solution to this problem: 427

an approach to the design of systems that, if all participants were to adopt it,
would lead to widely interoperable, integrated machines that could send, store,
process, and receive the users information. In marketing and public-relations
terms, it would provide ”seamless integration.”
In theory, open systems was simply a question of standards adoption. For 428

instance, if all the manufacturers of UNIX systems could [pg148] be convinced to
adopt the same basic standard for the operating system, then seamless
integration would naturally follow as all the various applications could be written
once to run on any variant UNIX system, regardless of which company made it. In
reality, such a standard was far from obvious, difficult to create, and even more
difficult to enforce. As such, the meaning of open systems was ”hopelessly plural,”
and the term came to mean an incredibly diverse array of things.
”Openness” is precisely the kind of concept that wavers between end and means. 429

Is openness good in itself, or is openness a means to achieve something elseand if
so what? Who wants to achieve openness, and for what purpose? Is openness a
goal? Or is it a means by which a different goalsay, ”interoperability” or
”integration”is achieved? Whose goals are these, and who sets them? Are the
goals of corporations different from or at odds with the goals of university
researchers or government officials? Are there large central visions to which the
activities of all are ultimately subordinate?
156Keves, ”Open Systems Formal Evaluation Process,” 87.

Two Bits Christopher M. Kelty 114

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Between 1980 and 1993, no person or company or computer industry consortium 430

explicitly set openness as the goal that organizations, corporations, or
programmers should aim at, but, by the same token, hardly anyone dissented
from the demand for openness. As such, it appears clearly as a kind of cultural
imperative, reflecting a longstanding social imaginary with roots in liberal
democratic notions, versions of a free market and ideals of the free exchange of
knowledge, but confronting changed technical conditions that bring the moral
ideas of order into relief, and into question.
In the 1980s everyone seemed to want some kind of openness, whether among 431

manufacturers or customers, from General Motors to the armed forces.157 The
debates, both rhetorical and technical, about the meaning of open systems have
produced a slough of writings, largely directed at corporate IT managers and CIOs.
For instance, Terry A. Critchley and K. C. Batty, the authors of Open Systems: The
Reality (1993), claim to have collected over a hundred definitions of open systems.
The definitions stress different aspectsfrom interoperability of heterogeneous
machines, to compatibility of different applications, to portability of operating
systems, to legitimate standards with open-interface definitionsincluding those
that privilege ideologies of a free market, as does Bill Gatess definition: ”Theres
nothing more open than the PC market. . . . [U]sers can choose the latest and
greatest software.” The range [pg149] of meanings was huge and oriented along
multiple axes: what, to whom, how, and so on. Open systems could mean that
source code was open to view or that only the specifications or interfaces were; it
could mean ”available to certain third parties” or ”available to everyone, including
competitors”; it could mean self-publishing, well-defined interfaces and application
programming interfaces (APIs), or it could mean sticking to standards set by
governments and professional societies. To cynics, it simply meant that the
marketing department liked the word open and used it a lot.
One part of the definition, however, was both consistent and extremely important: 432

the opposite of an ”open system” was not a ”closed system” but a ”proprietary
system.” In industries other than networking and computing the word proprietary
will most likely have a positive valence, as in ”our exclusive proprietary
technology.” But in the context of computers and networks such a usage became
anathema in the 1980s and 1990s; what customers reportedly wanted was a
system that worked nicely with other systems, and that system had to be by
definition open since no single company could provide all of the possible needs of
a modern business or government agency. And even if it could, it shouldnt be
allowed to. For instance, ”In the beginning was the word and the word was
proprietary. IBM showed the way, purveying machines that existed in splendid
isolation. They could not be operated using programs written for any other
computer; they could not communicate with the machines of competitors. If your
company started out buying computers of various sizes from the International
Business Machines Corporation because it was the biggest and best, you soon
found yourself locked as securely to Big Blue as a manacled wretch in a medieval
dungeon. When an IBM rival unveiled a technologically advanced product, you
could only sigh; it might be years before the new technology showed up in the IBM
157General Motors stirred strong interest in open systems by creating, in 1985, its Manufacturing
Automation Protocol (MAP), which was built on UNIX. At the time, General Motors was the
second-largest purchaser of computer equipment after the government. The Department of Defense
and the U.S. Air Force also adopted and required POSIX-compliant UNIX systems early on.

Two Bits Christopher M. Kelty 115

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

line.”158

With the exception of IBM (and to some extent its closest competitors: 433

Hewlett-Packard, Burroughs, and Unisys), computer corporations in the 1980s
sought to distance themselves from such ”medieval” proprietary solutions (such
talk also echoes that of usable pasts of the Protestant Reformation often used by
geeks). New firms like Sun and Apollo deliberately berated the IBM model. Bill Joy
reportedly called one of IBMs new releases in the 1980s a ”grazing dinosaur with a
truck outside pumping its bodily fluids through it.”159

Open systems was never a simple solution though: all that complexity in hardware, 434

software, components, and peripherals could only be solved by pushing hard for
standardseven for a single standard. Or, to put it differently, during the 1980s,
everyone agreed that open systems was a great idea, but no one agreed on which
open systems. As one of the anonymous speakers in Open Systems: The Reality
puts it, ”It took me a long time to understand what (the industry) meant by open
vs. proprietary, but I finally figured it out. From the perspective of any one supplier,
open meant our products. Proprietary meant everyone elses products.”160

For most supporters of open systems, the opposition between open and 435

proprietary had a certain moral force: it indicated that corporations providing the
latter were dangerously close to being evil, immoral, perhaps even criminal
monopolists. Adrian Gropper and Sean Doyle, the principals in Amicas, an Internet
teleradiology company, for instance, routinely referred to the large proprietary
healthcare-information systems they confronted in these terms: open systems are
the way of light, not dark. Although there are no doubt arguments for closed
systemssecurity, privacy, robustness, controlthe demand for interoperability does
not mean that such closure will be sacrificed.161 Closure was also a choice. That is,
open systems was an issue of sovereignty, involving the right, in a moral sense, of
a customer to control a technical order hemmed in by firm standards that allowed
customers to combine a number of different pieces of hardware and software
purchased in an open market and to control the configuration themselvesnot
enforced openness, but the right to decide oneself on whether and how to be open
or closed.
The open-systems idea of moral order conflicts, however, with an idea of moral 436

order represented by intellectual property: the right, encoded in law, to assert
ownership over and control particular bits of source code, software, and hardware.
The call for and the market in open systems were never imagined as being
opposed to intellectual property as such, even if the opposition between open and
proprietary seemed to indicate a kind of subterranean recognition of the role of
intellectual property. The issue was never explicitly broached. Of the hundred
definitions in Open Systems, only one definition comes close to including legal
issues: ”Speaker at Interop 90 (paraphrased and maybe apocryphal): If you ask to
gain access to a technology and the response you get back is a price list, then

158Paul Fusco, ”The Gospel According to Joy,” New York Times, 27 March 1988, Sunday Magazine, 28.
159”Dinosaur” entry, The Jargon File, ⌜ http://catb.org/jargon/html/D/dinosaur.html ⌟ .
160Crichtley and Batty, Open Systems, 10.
161An excellent counterpoint here is Paul Edwardss The Closed World, which clearly demonstrates
the appeal of a thoroughly and hierarchically controlled system such as the Semi-Automated Ground
Environment (SAGE) of the Department of Defense against the emergence of more ”green world”
models of openness.

Two Bits Christopher M. Kelty 116

http://catb.org/jargon/html/D/dinosaur.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

[pg151] that technology is ”open.” If what you get back is a letter from a lawyer, then
its not ”open.””162

Openness here is not equated with freedom to copy and modify, but with the 437

freedom to buy access to any aspect of a system without signing a contract, a
nondisclosure agreement, or any other legal document besides a check. The
ground rules of competition are unchallenged: the existing system of intellectual
propertya system that was expanded and strengthened in this periodwas a sine
qua non of competition.
Openness understood in this manner means an open market in which it is possible 438

to buy standardized things which are neither obscure nor secret, but can be
examined and judgeda ”commodity” market, where products have functions,
where quality is comparable and forms the basis for vigorous competition. What
this notion implies is freedom from monopoly control by corporations over
products, a freedom that is nearly impossible to maintain when the entire industry
is structured around the monopoly control of intellectual property through trade
secret, patent, or copyright. The blind spot hides the contradiction between an
industry imagined on the model of manufacturing distinct and tangible products,
and the reality of an industry that wavers somewhere between service and
product, dealing in intangible intellectual property whose boundaries and identity
are in fact defined by how they are exchanged, circulated, and shared, as in the
case of the proliferation and differentiation of the UNIX operating system.
There was no disagreement about the necessity of intellectual property in the 439

computer industry of the 1980s, and there was no perceived contradiction in the
demands for openness. Indeed, openness could only make sense if it were built on
top of a stable system of intellectual property that allowed competitors to maintain
clear definitions of the boundaries of their products. But the creation of
interoperable components seemed to demand a relaxation of the secrecy and
guardedness necessary to ”protect” intellectual property. Indeed, for some
observers, the problem of openness created the opportunity for the worst kinds of
cynical logic, as in this example from Regis McKennas Whos Afraid of Big
Blue?

Users want open environments, so the vendors had better comply. In fact, it is 440

a good idea to support new standards early. That way, you can help control the
development of standards. Moreover, you can [pg152] take credit for driving the
standard. Supporting standards is a way to demonstrate that youre on the side
of users. On the other hand, companies cannot compete on the basis of
standards alone. Companies that live by standards can die by standards.
Other companies, adhering to the same standards, could win on the basis of
superior manufacturing technology. If companies do nothing but adhere to
standards, then all computers will become commodities, and nobody will be
able to make any money. Thus, companies must keep something proprietary,
something to differentiate their products.163

By such an account, open systems would be tantamount to economic regression, a 441

162Crichtley and Batty, Open Systems, 13.
163McKenna, Whos Afraid of Big Blue? 178, emphasis added. McKenna goes on to suggest that
computer companies can differentiate themselves by adding services, better interfaces, or higher
reliabilityironically similar to arguments that the Open Source Initiative would make ten years later.

Two Bits Christopher M. Kelty 117

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

state of pure competition on the basis of manufacturing superiority, and not on the
basis of the competitive advantage granted by the monopoly of intellectual
property, the clear hallmark of a high-tech industry.164 It was an irresolvable
tension between the desire for a cooperative, market-based infrastructure and the
structure of an intellectual-property system ill-suited to the technical realities
within which companies and customers operateda tension revealing the
reorientation of knowledge and power with respect to creation, dissemination, and
modification of knowledge.
From the perspective of intellectual property, ideas, designs, and source code are 442

everythingif a company were to release the source code, and allow other vendors
to build on it, then what exactly would they be left to sell? Open systems did not
mean anything like free, open-source, or public-domain computing. But the fact
that competition required some form of collaboration was obvious as well:
standard software and network systems were needed; standard markets were
needed; standard norms of innovation within the constraints of standards were
needed. In short, the challenge was not just the creation of competitive products
but the creation of a standard infrastructure, dealing with the technical questions
of availability, modifiability, and reusability of components, and the moral
questions of the proper organization of competition and collaboration across
diverse domains: engineers, academics, the computer industry, and the industries
it computerized. What follows is the story of how UNIX entered the open-systems
fray, a story in which the tension between the conceiving of openness and the
demands of intellectual property is revealed.

Open Systems One: Operating Systems 443

In 1980 UNIX was by all accounts the most obvious choice for a standard operating 444

system for a reason that seemed simple at the outset: it ran on more than one
kind of hardware. It had been installed on DEC machines and IBM machines and
Intel processors and Motorola processorsa fact exciting to many professional
programmers, university computer scientists, and system administrators, many of
whom also considered UNIX to be the best designed of the available operating
systems.
There was a problem, however (there always is): UNIX belonged to AT&T, and 445

AT&T had licensed it to multiple manufacturers over the years, in addition to
allowing the source code to circulate more or less with abandon throughout the
world and to be ported to a wide variety of different machine architectures. Such
proliferation, albeit haphazard, was a dream come true: a single, interoperable
operating system running on all kinds of hardware. Unfortunately, proliferation
would also undo that dream, because it meant that as the markets for

164Richard Stallman, echoing the image of medieval manacled wretches, characterized the blind
spot thus: ”Unix does not give the user any more legal freedom than Windows does. What they
mean by open systems is that you can mix and match components, so you can decide to have, say,
a Sun chain on your right leg and some other companys chain on your left leg, and maybe some
third companys chain on your right arm, and this is supposed to be better than having to choose to
have Sun chains on all your limbs, or Microsoft chains on all your limbs. You know, I dont care whose
chains are on each limb. What I want is not to be chained by anyone” (”Richard Stallman: High
School Misfit, Symbol of Free Software, MacArthur-certified Genius,” interview by Michael Gross,
Cambridge, Mass., 1999, 5, ⌜ http://www.mgross.com/MoreThgsChng/interviews/stallman1.html ⌟).

Two Bits Christopher M. Kelty 118

http://www.mgross.com/MoreThgsChng/interviews/stallman1.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

workstations and operating systems heated up, the existing versions of UNIX
hardened into distinct and incompatible versions with different features and
interfaces. By the mid 1980s, there were multiple competing efforts to standardize
UNIX, an endeavour that eventually went haywire, resulting in the so-called UNIX
wars, in which ”gangs” of vendors (some on both sides of the battle) teamed up to
promote competing standards. The story of how this happened is instructive, for it
is a story that has been reiterated several times in the computer industry.165

As a hybrid commercial-academic system, UNIX never entered the market as a 446

single thing. It was licensed in various ways to different people, both academic
and commercial, and contained additions and tools and other features that may or
may not have originated at (or been returned to) Bell Labs. By the early 1980s, the
Berkeley Software Distribution was in fact competing with the AT&T version, even
though BSD was a sublicenseeand it was not the only one. By the late 1970s and
early 1980s, a number of corporations had licensed UNIX from AT&T for use on
new machines. Microsoft licensed it (and called it Xenix, rather than licensing the
name UNIX as well) to be installed on Intel-based machines. IBM, Unisys, Amdahl,
Sun, DEC, and Hewlett-Packard all followed suit and [pg154] created their own
versions and names: HP-UX, A/UX, AIX, Ultrix, and so on. Given the ground rules of
trade secrecy and intellectual property, each of these licensed versions needed to
be made legally distinctif they were to compete with each other. Even if ”UNIX”
remained conceptually pure in an academic or pedagogical sense, every
manufacturer would nonetheless have to tweak, to extend, to optimize in order to
differentiate. After all, ”if companies do nothing but adhere to standards, then all
computers will become commodities, and nobody will be able to make any
money.”166

It was thus unlikely that any of these corporations would contribute the changes 447

they made to UNIX back into a common pool, and certainly not back to AT&T which
subsequent to the 1984 divestiture finally released their own commercial version
of UNIX, called UNIX System V. Very quickly, the promising ”open” UNIX of the
1970s became a slough of alternative operating systems, each incompatible with
the next thanks to the addition of market-differentiating features and
hardware-specific tweaks. According to Pamela Gray, ”By the mid-1980s, there
were more than 100 versions in active use” centered around the three market
leaders, AT&Ts System V, Microsoft/SCO Xenix, and the BSD.167 By 1984, the
differences in systems had become significantas in the case of the BSD additions
of the TCP/IP protocols, the vi editor, and the Pascal compilerand created not only
differentiation in terms of quality but also incompatibility at both the software and
networking levels.
Different systems of course had different user communities, based on who was the 448

customer of whom. Eric Raymond suggests that in the mid-1980s, independent
hackers, programmers, and computer scientists largely followed the fortunes of
BSD: ”The divide was roughly between longhairs and shorthairs; programmers and
165A similar story can be told about the emergence, in the late 1960s and early 1970s, of
manufacturers of ”plug-compatible” devices, peripherals that plugged into IBM machines (see
Takahashi, ”The Rise and Fall of the Plug Compatible Manufacturers”). Similarly, in the 1990s the
story of browser compatibility and the World Wide Web Consortium (W3C) standards is another
recapitulation.
166McKenna, Whos Afraid of Big Blue? 178.
167Pamela Gray, Open Systems.

Two Bits Christopher M. Kelty 119

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

technical people tended to line up with Berkeley and BSD, more business-oriented
types with AT&T and System V. The longhairs, repeating a theme from Unixs early
days ten years before, liked to see themselves as rebels against a corporate
empire; one of the small companies put out a poster showing an X-wing-like space
fighter marked ”BSD” speeding away from a huge AT&T death star logo left broken
and in flames.”168

So even though UNIX had become the standard operating system of choice for 449

time-sharing, multi-user, high-performance computers by the mid-1980s, there
was no such thing as UNIX. Competitors [pg155] in the UNIX market could hardly
expect the owner of the system, AT&T, to standardize it and compete with them at
the same time, and the rest of the systems were in some legal sense still
derivations from the original AT&T system. Indeed, in its licensing pamphlets,
AT&T even insisted that UNIX was not a noun, but an adjective, as in ”the UNIX
system.”169

The dawning realization that the proliferation of systems was not only spreading 450

UNIX around the world but also spreading it thin and breaking it apart led to a
series of increasingly startling and high-profile attempts to ”standardize” UNIX.
Given that the three major branches (BSD, which would become the industry
darling as Suns Solaris operating system; Microsoft, and later SCO Xenix; and
AT&Ts System V) all emerged from the same AT&T and Berkeley work done largely
by Thompson, Ritchie, and Joy, one would think that standardization would be a
snap. It was anything but.

Figuring Out Goes Haywire 451

Figuring out the moral and technical order of open systems went haywire around 452

1986-88, when there were no fewer than four competing international standards,
represented by huge consortia of computer manufacturers (many of whom
belonged to multiple consortia): POSIX, the X/Open consortium, the Open Software
Foundation, and UNIX International. The blind spot of open systems had much to
do with this crazy outcome: academics, industry, and government could not find
ways to agree on standardization. One goal of standardization was to afford
customers choice; another was to allow competition unconstrained by ”artificial”
means. A standard body of source code was impossible; a standard ”interface
definition” was open to too much interpretation; government and academic
standards were too complex and expensive; no particular corporations standard
could be trusted (because they could not be trusted to reveal it in advance of their
own innovations); and worst of all, customers kept buying, and vendors kept
shipping, and the world was increasingly filled with diversity, not
standardization.
UNIX proliferated quickly because of porting, leading to multiple instances of an 453

operating system with substantially similar source code shared by academics and
licensed by AT&T. But it differentiated [pg156] just as quickly because of forking, as
particular features were added to different ports. Some features were
168Eric Raymond, ”Origins and History of Unix, 1969-1995,” The Art of UNIX Programming,
⌜ http://www.faqs.org/docs/artu/ch02s01.html#id2880014 ⌟ .
169Libes and Ressler, Life with UNIX, 22. Also noted in Tanenbaum, ”The UNIX Marketplace in 1987,”
419.

Two Bits Christopher M. Kelty 120

http://www.faqs.org/docs/artu/ch02s01.html##id2880014
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

reincorporated into the ”main” branchthe one Thompson and Ritchie worked onbut
the bulk of these mutations spread in a haphazard way, shared through users
directly or implemented in newly formed commercial versions. Some features
were just that, features, but others could extend the system in ways that might
make an application possible on one version, but not on another.
The proliferation and differentiation of UNIX, the operating system, had peculiar 454

effects on the emerging market for UNIX, the product: technical issues entailed
design and organizational issues. The original UNIX looked the way it did because
of the very peculiar structure of the organization that created and sustained UNIX:
Bell Labs and the worldwide community of users and developers. The newly
formed competitors, conceiving of UNIX as a product distinct from the original
UNIX, adopted it precisely because of its portability and because of the promise of
open systems as an alternative to ”big iron” mainframes. But as UNIX was
funneled into existing corporations with their own design and organizational
structures, it started to become incompatible with itself, and the desire for
competition in open systems necessitated efforts at UNIX standardization.
The first step in the standardization of open systems and UNIX was the creation of 455

what was called an ”interface definition,” a standard that enumerated the
minimum set of functions that any version of UNIX should support at the interface
level, meaning that any programmer who wrote an application could expect to
interact with any version of UNIX on any machine in the same way and get the
same response from the machine (regardless of the specific implementation of the
operating system or the source code that was used). Interface definitions, and
extensions to them, were ideally to be published and freely available.
The interface definition was a standard that emphasized portability, not at the 456

source-code or operating-system level, but at the application level, allowing
applications built on any version of UNIX to be installed and run on any other. The
push for such a standard came first from a UNIX user group founded in 1980 by
Bob Marsh and called, after the convention of file hierarchies in the UNIX interface,
”/usr/group” (later renamed Uniforum). The 1984 /usr/group standard defined a set
of system calls, which, however, ”was [pg157] immediately ignored and, for all
practical purposes, useless.”170 It seemed the field was changing too fast and
UNIX proliferating and innovating too widely for such a standard to work.
The /usr/group standard nevertheless provided a starting point for more traditional 457

standards organizationsthe Institute of Electrical and Electronics Engineers (IEEE)
and the American National Standards Institute (ANSI)to take on the task. Both
institutions took the /usr/group standard as a basis for what would be called IEEE
P1003 Portable Operating System Interface for Computer Environments (POSIX).
Over the next three years, from 1984 to 1987, POSIX would work diligently at
providing a standard interface definition for UNIX.
Alongside this development, the AT&T version of UNIX became the basis for a 458

different standard, the System V Interface Definition (SVID), which attempted to
standardize a set of functions similar but not identical to the /usr/group and POSIX
standards. Thus emerged two competing definitions for a standard interface to a
system that was rapidly proliferating into hundreds of tiny operating-system

170Libes and Ressler, Life with UNIX, 67.

Two Bits Christopher M. Kelty 121

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

fiefdoms.171 The danger of AT&T setting the standard was not lost on any of the
competing manufacturers. Even if they created a thoroughly open
standard-interface definition, AT&Ts version of UNIX would be the first to
implement it, and they would continually have privileged knowledge of any
changes: if they sought to change the implementation, they could change the
standard; if they received demands that the standard be changed, they could
change their implementation before releasing the new standard.
In response to this threat, a third entrant into the standards race emerged: 459

X/Open, which comprised a variety of European computer manufacturers
(including AT&T!) and sought to develop a standard that encompassed both SVID
and POSIX. The X/Open initiative grew out of European concern about the
dominance of IBM and originally included Bull, Ericsson, ICL, Nixdorf, Olivetti,
Philips, and Siemens. In keeping with a certain 1980s taste for the integration of
European economic activity vis-à-vis the United States and Japan, these
manufacturers banded together both to distribute a unified UNIX operating system
in Europe (based initially on the BSD and Sun versions of UNIX) and to attempt to
standardize it at the same time.
X/Open represented a subtle transformation of standardization efforts and of the 460

organizational definition of open systems. While [pg158] the /usr/group standard was
developed by individuals who used UNIX, and the POSIX standard by an
acknowledged professional society (IEEE), the X/Open group was a collective of
computer corporations that had banded together to fund an independent entity to
help further the cause of a standard UNIX. This paradoxical situationof a need to
share a standard among all the competitors and the need to keep the details of
that standardized product secret to maintain an advantagewas one that many
manufacturers, especially the Europeans with their long experience of IBMs
monopoly, understood as mutually destructive. Hence, the solution was to engage
in a kind of organizational innovation, to create a new form of metacorporate
structure that could strategically position itself as at least temporarily interested in
collaboration with other firms, rather than in competition. Thus did stories and
promises of open systems wend their way from the details of technical design to
those of organizational design to the moral order of competition and collaboration,
power and strategy. ”Standards” became products that corporations sought to
”sell” to their own industry through the intermediary of the consortium.
In 1985 and 1986 the disarrayed state of UNIX was also frustrating to the major 461

U.S. manufacturers, especially to Sun Microsystems, which had been founded on
the creation of a market for UNIX-based ”workstations,” high-powered networked
computers that could compete with mainframes and personal computers at the
same time. Founded by Bill Joy, Vinod Khosla, and Andreas Bechtolsheim, Sun had
very quickly become an extraordinarily successful computer company. The
business pages and magazines were keen to understand whether workstations
were viable competitors to PCs, in particular to those of IBM and Microsoft, and the
de facto standard DOS operating system, for which a variety of extremely
successful business-, personal-, and home-computer applications were

171A case might be made that a third definition, the ANSI standard for the C programming language,
also covered similar ground, which of course it would have had to in order to allow applications
written on one [pg330] operating system to be compiled and run on another (see Gray, Open Systems,
55-58; Libes and Ressler, Life with UNIX, 70-75).

Two Bits Christopher M. Kelty 122

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

written.
Sun seized on the anxiety around open systems, as is evident in the ad it ran 462

during the summer of 1987 (figure 4). The ad plays subtly on two anxieties: the
first is directed at the consumer and suggests that only with Sun can one actually
achieve interoperability among all of one business computers, much less across a
network or industry; the second is more subtle and plays to fears within the
computer industry itself, the anxiety that Sun might merge with one [pg159] of the
big corporations, AT&T or Unisys, and corner the market in open systems by
producing the de facto standard.
2bits_05_04-100.png,w619h376 [* 4a and 4b. Open systems anxiety around 463

mergers and compatibility. Sun Microsystems advertisement, Wall Street Journal, 9
July 1987.]
In fact, in October 1987 Sun announced that it had made a deal with AT&T. AT&T 464

would distribute a workstation based on Suns SPARC line of workstations and
would acquire 20 percent of Sun.172 As part of this announcement, Sun and AT&T
made clear that they intended to merge two of the dominant versions of UNIX on
the market: AT&Ts System V and the BSD-derived Solaris. This move clearly
frightened the rest of the manufacturers interested in UNIX and open systems, as
it suggested a kind of super-power alignment that would restructure (and
potentially dominate) the market. A 1988 article in the New York Times quotes an
industry analyst who characterizes the merger as ”a matter of concern at the
highest levels of every major computer company in the United States, and possibly
the world,” and it suggests that competing manufacturers ”also fear that AT&T will
gradually make Unix a proprietary product, usable only on AT&T or Sun
machines.”173 The industry anxiety was great enough that in March Unisys (a
computer manufacturer, formerly Burroughs-Sperry) announced that it would work
with AT&T and Sun to bring UNIX to its mainframes and to make its [pg160] business
applications run on UNIX. Such a move was tantamount to Unisys admitting that
there would be no future in proprietary high-end computingthe business on which
it had hitherto built its reputationunless it could be part of the consortium that
could own the standard.174

In response to this perceived collusion a group of U.S. and European companies 465

banded together to form another rival organizationone that partially overlapped
with X/Open but now included IBMthis one called the Open Software Foundation. A
nonprofit corporation, the foundation included IBM, Digital Equipment,
Hewlett-Packard, Bull, Nixdorf, Siemens, and Apollo Computer (Suns most direct
competitor in the workstation market). Their goal was explicitly to create a
”competing standard” for UNIX that would be available on the hardware they
manufactured (and based, according to some newspaper reports, on IBMs AIX,
which was to be called OSF/1). AT&T appeared at first to support the foundation,
suggesting that if the Open Software Foundation could come up with a standard,
then AT&T would make System V compatible with it. Thus, 1988 was the summer
of open love. Every major computer manufacturer in the world was now part of

172”AT&T Deal with Sun Seen,” New York Times, 19 October 1987, D8.
173Thomas C. Hayesdallas, ”AT&Ts Unix Is a Hit at Last, and Other Companies Are Wary,” New York
Times, 24 February 1988, D8.
174”Unisys Obtains Pacts for Unix Capabilities,” New York Times, 10 March 1988, D4.

Two Bits Christopher M. Kelty 123

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

some consortium or another, and some were part of twoeach promoting a
separate standard.
Of all the corporations, Sun did the most to brand itself as the originator of the 466

open-systems concept. They made very broad claims for the success of
open-systems standardization, as for instance in an ad from August 1988 (figure
5), which stated in part:

But whats more, those sales confirm a broad acceptance of the whole idea 467

behind Sun.
The Open Systems idea. Systems based on standards so universally accepted 468

that they allow combinations of hardware and software from literally
thousands of independent vendors. . . . So for the first time, youre no longer
locked into the company who made your computers. Even if its us.

The ad goes on to suggest that ”in a free market, the best products win out,” even 469

as Sun played both sides of every standardization battle, cooperating with both
AT&T and with the Open Software Foundation. But by October of that year, it was
clear to Sun that [pg161] [pg162] the idea hadnt really become ”so universal” just yet.
In that month AT&T and Sun banded together with seventeen other manufacturers
and formed a rival consortium: Unix International, a coalition of the willing that
would back the AT&T UNIX System V version as the one true open standard. In a
full-page advertisement from Halloween of 1988 (figure 6), run simultaneously in
the New York Times, the Washington Post, and the Wall Street Journal, the rhetoric
of achieved success remained, but now instead of ”the Open Systems idea,” it was
”your demand for UNIX System V-based solutions that ushered in the era of open
architecture.” Instead of a standard for all open systems, it was a war of all against
all, a war to assure customers that they had made, not the right choice of
hardware or software, but the right choice of standard.
2bits_05_05-100.png,w631h846 [* It pays to be open: Suns version of profitable 470

and successful open systems. Sun Microsystems advertisement, New York Times,
2 August 1988.]
The proliferation of standards and standards consortia is often referred to as the 471

UNIX wars of the late 1980s, but the creation of such consortia did not indicate
clearly drawn lines. Another metaphor that seems to have been very popular in
the press at the time was that of ”gang” warfare (no doubt helped along by the
creation of another industry consortia informally called the Gang of Nine, which
were involved in a dispute over whether MicroChannel or EISA buses should be
installed in PCs). The idea of a number of companies forming gangs to fight with
each other, Bloods-and-Crips styleor perhaps more Jets-and-Sharks style, minus
the singingwas no doubt an appealing metaphor at the height of Los Angeless very
real and high-profile gang warfare. But as one article in the New York Times
pointed out, these were strange gangs: ”Since openness and cooperation are the
buzzwords behind these alliances, the gang often asks its enemy to join. Often the
enemy does so, either so that it will not seem to be opposed to openness or to
keep tabs on the group. IBM was invited to join the corporation for Open Systems,
even though the clear if unstated motive of the group was to dilute IBMs influence
in the market. AT&T negotiated to join the Open Software Foundation, but the talks
collapsed recently. Some companies find it completely consistent to be members

Two Bits Christopher M. Kelty 124

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

of rival gangs. . . . About 10 companies are members of both the Open Software
Foundation and its archrival Unix International.”175

2bits_05_06-100.png,w620h917 [* The UNIX Wars, Halloween 1988. UNIX 472

International advertisement, Wall Street Journal and New York Times, 31 October
1988.]
The proliferation of these consortia can be understood in various ways. One could 473

argue that they emerged at a timeduring the Reagan administrationwhen antitrust
policing had diminished to [pg163] [pg164] the point where computer corporations did
not see such collusion as a risky activity vis-à-vis antitrust policing. One could also
argue that these consortia represented a recognition that the focus on hardware
control (the meaning of proprietary) had been replaced with a focus on the control
of the ”open standard” by one or several manufacturers, that is, that competition
was no longer based on superior products, but on ”owning the standard.” It is
significant that the industry consortia quickly overwhelmed national efforts, such
as the IEEE POSIX standard, in the media, an indication that no one was looking to
government or nonprofits, or to university professional societies, to settle the
dispute by declaring a standard, but rather to industry itself to hammer out a
standard, de facto or otherwise. Yet another way to understand the emergence of
these consortia is as a kind of mutual policing of the market, a kind of paranoid
strategy of showing each other just enough to make sure that no one would
leapfrog ahead and kill the existing, fragile competition.
What this proliferation of UNIX standards and consortia most clearly represents, 474

however, is the blind spot of open systems: the difficulty of having collaboration
and competition at the same time in the context of intellectual-property rules that
incompletely capture the specific and unusual characteristics of software. For
participants in this market, the structure of intellectual property was
unassailablewithout it, most participants assumed, innovation would cease and
incentives disappear. Despite the fact that secrecy haunted the industry, its
customers sought both openness and compatibility. These conflicting demands
proved irresolvable.

Denouement 475

Ironically, the UNIX wars ended not with the emergence of a winner, but with the 476

reassertion of proprietary computing: Microsoft Windows and Windows NT. Rather
than open systems emerging victorious, ushering in the era of seamless
integration of diverse components, the reverse occurred: Microsoft managed to
grab a huge share of computer markets, both desktop and high-performance, by
leveraging its brand, the ubiquity of DOS, and application-software developers
dependence on the ”Wintel” monster (Windows plus Intel chips). Microsoft
triumphed, largely for the same reasons the open-systems dream failed: the legal
structure of intellectual [pg165] property favored a strong corporate monopoly on a
single, branded product over a weak array of ”open” and competing components.
There was no large gain to investors, or to corporations, from an industry of nice
175Andrew Pollack, ”Computer Gangs Stake Out Turf,” New York Times, 13 December 1988, D1. See
also Evelyn Richards, ”Computer Firms Get a Taste of Gang Warfare,” Washington Post, 11 December
1988, K1; Brit Hume, ”IBM, Once the Bully on the Block, Faces a Tough New PC Gang,” Washington
Post, 3 October 1988, E24.

Two Bits Christopher M. Kelty 125

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

guys sharing the source code and making the components work together.
Microsoft, on the other hand, had decided to do so internal to itself; it did not
necessarily need to form consortia or standardize its operating systems, if it could
leverage its dominance in the market to spread the operating system far and wide.
It was, as standards observers like to say, the triumph of de facto standardization
over de jure. It was a return to the manacled wretches of IBMs monopolybut with a
new dungeon master.
The denouement of the UNIX standards story was swift: AT&T sold its UNIX System 477

Labs (including all of the original source and rights) to Novell in 1993, who sold it
in turn to SCO two years later. Novell sold (or transferred) the trademark name
UNIX to the X/Open group, which continued to fight for standardization, including a
single universal UNIX specification. In 1996 X/Open and the Open Software
Foundation merged to form the Open Group.176 The Open Group eventually joined
forces with IEEE to turn POSIX into a single UNIX specification in 2001. They
continue to push the original vision of open systems, though they carefully avoid
using the name or concept, referring instead to the trademarked mouthful
”Boundaryless Information Flow” and employing an updated and newly inscrutable
rhetoric: ”Boundaryless Information Flow, a shorthand representation of access to
integrated information to support business process improvements represents a
desired state of an enterprises infrastructure and is specific to the business needs
of the organization.”177

The Open Group, as well as many other participants in the history of open systems, 478

recognize the emergence of ”open source” as a return to the now one true path of
boundaryless information flow. Eric Raymond, of course, sees continuity and
renewal (not least of which in his own participation in the Open Source movement)
and in his Art of UNIX Programming says, ”The Open Source movement is building
on this stable foundation and is creating a resurgence of enthusiasm for the UNIX
philosophy. In many ways Open Source can be seen as the true delivery of Open
Systems that will ensure it continues to go from strength to strength.”178

This continuity, of course, deliberately disavows the centrality of the legal 479

component, just as Raymond and the Open Source [pg166] Initiative had in 1998.
The distinction between a robust market in UNIX operating systems and a standard
UNIX-based infrastructure on which other markets and other activities can take
place still remains unclear to even those closest to the money and machines. It
does not yet exist, and may well never come to.
The growth of Free Software in the 1980s and 1990s depended on openness as a 480

concept and component that was figured out during the UNIX wars. It was during
these wars that the Free Software Foundation (and other groups, in different ways)
began to recognize the centrality of the issue of intellectual property to the goal of
creating an infrastructure for the successful creation of open systems.179 The GNU
(GNUs Not Unix) project in particular, but also the X Windows system at MIT, the
Remote Procedure Call and Network File System (NFS) systems created by Sun,

176”What Is Unix?” The Unix System, ⌜ http://www.unix.org/what_is_unix/history_timeline.html ⌟ .
177”About the Open Group,” The Open Group, ⌜ http://www.opengroup.org/overview/vision-mission.htm ⌟ .
178”What Is Unix?” The Unix System, ⌜ http://www.unix.org/what_is_unix/history_timeline.html ⌟ .
179Larry McVoy was an early voice, within Sun, arguing for solving the open-systems problem by
turning to Free Software. Larry McVoy, ”The Sourceware Operating System Proposal,” 9 November
1993, ⌜ http://www.bitmover.com/lm/papers/srcos.html ⌟ .

Two Bits Christopher M. Kelty 126

http://www.unix.org/what_is_unix/history_timeline.html
http://www.opengroup.org/overview/vision-mission.htm
http://www.unix.org/what_is_unix/history_timeline.html
http://www.bitmover.com/lm/papers/srcos.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

and tools like sendmail and BIND were each in their own way experiments with
alternative licensing arrangements and were circulating widely on a variety of the
UNIX versions in the late 1980s. Thus, the experience of open systems, while
technically a failure as far as UNIX was concerned, was nonetheless a profound
learning experience for an entire generation of engineers, hackers, geeks, and
entrepreneurs. Just as the UNIX operating system had a pedagogic life of its own,
inculcating itself into the minds of engineers as the paradigm of an operating
system, open systems had much the same effect, realizing an inchoate philosophy
of openness, interconnection, compatibility, interoperabilityin short, availability
and modifiabilitythat was in conflict with intellectual-property structures as they
existed. To put it in Freudian terms: the neurosis of open systems wasnt cured, but
the structure of its impossibility had become much clearer to everyone. UNIX, the
operating system, did not disappear at allbut UNIX, the market, did.

Open Systems Two: Networks 481

The struggle to standardize UNIX as a platform for open systems was not the only 482

open-systems struggle; alongside the UNIX wars, another ”religious war” was
raging. The attempt to standardize networksin particular, protocols for the
inter-networking of multiple, diverse, and autonomous networks of computerswas
also a key aspect of the open-systems story of the 1980s.180 The war [pg167]

between the TCP/IP and OSI was also a story of failure and surprising success: the
story of a successful standard with international approval (the OSI protocols)
eclipsed by the experimental, military-funded TCP/IP, which exemplified an
alternative and unusual standards process. The moral-technical orders expressed
by OSI and TCP/IP are, like that of UNIX, on the border between government,
university, and industry; they represent conflicting social imaginaries in which
power and legitimacy are organized differently and, as a result, expressed
differently in the technology.
OSI and TCP/IP started with different goals: OSI was intended to satisfy everyone, 483

to be the complete and comprehensive model against which all competing
implementations would be validated; TCP/IP, by contrast, emphasized the easy
and robust interconnection of diverse networks. TCP/IP is a protocol developed by
bootstrapping between standard and implementation, a mode exemplified by the
Requests for Comments system that developed alongside them as part of the
Arpanet project. OSI was a ”model” or reference standard developed by
internationally respected standards organizations.
In the mid-1980s OSI was en route to being adopted internationally, but by 1993 it 484

had been almost completely eclipsed by TCP/IP. The success of TCP/IP is significant
for three reasons: (1) availabilityTCP/IP was itself available via the network and
development open to anyone, whereas OSI was a bureaucratically confined and
expensive standard and participation was confined to state and corporate

180The distinction between a protocol, an implementation and a standard is important: Protocols are
descriptions of the precise terms by which two computers can communicate (i.e., a dictionary and a
handbook for communicating). An implementation is the creation of software that uses a protocol
(i.e., actually does the communicating; thus two implementations using the same protocol should be
able to share data. A standard defines which protocol should be used by which computers, for what
purposes. It may or may not define the protocol, but will set limits on changes to that protocol.

Two Bits Christopher M. Kelty 127

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

representatives, organized through ISO in Geneva; (2) modifiabilityTCP/IP could be
copied from an existing implementation (such as the BSD version of UNIX) and
improved, whereas OSI was a complex standard that had few existing
implementations available to copy; and (3) serendipitynew uses that took
advantage of availability and modifiability sprouted, including the ”killer app” that
was the World Wide Web, which was built to function on existing TCP/IP-based
networks, convincing many manufacturers to implement that protocol instead of,
or in addition to, OSI.
The success of TCP/IP over OSI was also significant because of the difference in the 485

standardization processes that it exemplified. The OSI standard (like all official
international standards) is conceived and published as an aid to industrial growth:
it was imagined according to the ground rules of intellectual property and as an
attempt to facilitate the expansion of markets in networking. [pg168] OSI would be a
”vendor-neutral” standard: vendors would create their own, secret
implementations that could be validated by OSI and thereby be expected to
interoperate with other OSI-validated systems. By stark contrast, the TCP/IP
protocols were not published (in any conventional sense), nor were the
implementations validated by a legitimate international-standards organization;
instead, the protocols are themselves represented by implementations that allow
connection to the network itself (where the TCP/IP protocols and implementations
are themselves made available). The fact that one can only join the network if one
possesses or makes an implementation of the protocol is generally seen as the
ultimate in validation: it works.181 In this sense, the struggle between TCP/IP and
OSI is indicative of a very familiar twentieth-century struggle over the role and
extent of government planning and regulation (versus entrepreneurial activity and
individual freedom), perhaps best represented by the twin figures of Friedrich
Hayek and Maynard Keynes. In this story, it is Hayeks aversion to planning and the
subsequent privileging of spontaneous order that eventually triumphs, not
Keyness paternalistic view of the government as a neutral body that absorbs or
encourages the swings of the market.

Bootstrapping Networks 486

The ”religious war” between TCP/IP and OSI occurred in the context of intense 487

competition among computer manufacturers and during a period of vibrant
experimentation with computer networks worldwide. As with most developments
in computing, IBM was one of the first manufacturers to introduce a networking
system for its machines in the early 1970s: the System Network Architecture
(SNA). DEC followed suit with Digital Network Architecture (DECnet or DNA), as did
Univac with Distributed Communications Architecture (DCA), Burroughs with
Burroughs Network Architecture (BNA), and others. These architectures were, like
the proprietary operating systems of the same era, considered closed networks,
networks that interconnected a centrally planned and specified number of
machines of the same type or made by the same manufacturer. The goal of such
networks was to make connections internal to a firm, even if that involved

181The advantages of such an unplanned and unpredictable network have come to be identified in
hindsight as a design principle. See Gillespie, ”Engineering a Principle” for an excellent analysis of
the history of ”end to end” or ”stupid” networks.

Two Bits Christopher M. Kelty 128

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

geographically widespread systems (e.g., from branch to headquarters). Networks
were also to be products.
The 1970s and 1980s saw extraordinarily vibrant experimentation with academic, 488

military, and commercial networks. Robert Metcalfe had developed Ethernet at
Xerox PARC in the mid-1970s, and IBM later created a similar technology called
”token ring.” In the 1980s the military discovered that the Arpanet was being used
predominantly by computer scientists and not just for military applications, and
decided to break it into MILNET and CSNET.182 Bulletin Board Services, which
connected PCs to each other via modems to download files, appeared in the late
1970s. Out of this grew Tom Jenningss very successful experiment called
FidoNet.183 In the 1980s an existing social network of university faculty on the
East Coast of the United States started a relatively successful network called
BITNET (Because Its There Network) in the mid-1980s.184 The Unix to Unix Copy
Protocol (uucp), which initially enabled the Usenet, was developed in the late
1970s and widely used until the mid-1980s to connect UNIX computers together.
In 1984 the NSF began a program to fund research in networking and created the
first large backbones for NSFNet, successor to the CSNET and Arpanet.185

In the 1970s telecommunications companies and spin-off start-ups experimented 489

widely with what were called ”videotex” systems, of which the most widely
implemented and well-known is Minitel in France.186 Such systems were designed
for consumer users and often provided many of the now widespread services
available on the Internet in a kind of embryonic form (from comparison shopping
for cars, to directory services, to pornography).187 By the late 1970s, videotex
systems were in the process of being standardized by the Commité Consultative
de Information, Technologie et Télécommunications (CCITT) at the International
Telecommunications Union (ITU) in Geneva. These standards efforts would
eventually be combined with work of the International Organization for
Standardization (ISO) on OSI, which had originated from work done at
Honeywell.188

One important feature united almost all of these experiments: the networks of the 490

computer manufacturers were generally piggybacked, or bootstrapped, onto
existing telecommunications infrastructures built by state-run or regulated
monopoly telecommunications firms. This situation inevitably spelled grief, for
telecommunications providers are highly regulated entities, while the computer
industry has been almost totally unregulated from its [pg170] inception. Since an
increasingly core part of the computer industrys business involved transporting
signals through telecommunications systems without being regulated to do so, the
telecommunications industry naturally felt themselves at a disadvantage.189
182William Broad, ”Global Network Split as Safeguard,” New York Times, 5 October 1983, A13.
183See the incomparable BBS: The Documentary, DVD, directed by Jason Scott (Boston: Bovine
Ignition Systems, 2005), ⌜ http://www.bbsdocumentary.com/ ⌟ .
184Grier and Campbell, ”A Social History of Bitnet and Listserv 1985-1991.”
185On Usenet, see Hauben and Hauben, Netizens. See also Pfaffenberger, ”A Standing Wave in the
Web of Our Communications.”
186Schmidt and Werle, Coordinating Technology, chap. 7.
187See, for example, Martin, Viewdata and the Information Society.
188There is little information on the development of open systems; there is, however, a brief note
from William Stallings, author of perhaps the most widely used textbook on networking, at ”The
Origins of OSI,” ⌜ http://williamstallings.com/Extras/OSI.html ⌟ .
189Brock, The Second Information Revolution is a good introductory source for this conflict, at least in

Two Bits Christopher M. Kelty 129

http://www.bbsdocumentary.com/
http://williamstallings.com/Extras/OSI.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Telecommunications companies were not slow to respond to the need for data
communications, but their ability to experiment with products and practices
outside the scope of telephony and telegraphy was often hindered by concerns
about antitrust and monopoly.190 The unregulated computer industry, by contrast,
saw the tentativeness of the telecommunications industry (or national PTTs) as
either bureaucratic inertia or desperate attempts to maintain control and power
over existing networksthough no computer manufacturer relished the idea of
building their own physical network when so many already existed.
TCP/IP and OSI have become emblematic of the split between the worlds of 491

telecommunications and computing; the metaphors of religious wars or of blood
feuds and cold wars were common.191 A particularly arch account from this period
is Carl Malamuds Exploring the Internet: A Technical Travelogue, which documents
Malamuds (physical) visits to Internet sites around the globe, discussions (and
beer) with networking researchers on technical details of the networks they have
created, and his own typically geeky, occasionally offensive takes on cultural
difference.192 A subtheme of the story is the religious war between Geneva (in
particular the ITU) and the Internet: Malamud tells the story of asking the ITU to
release its 19,000-page ”blue book” of standards on the Internet, to facilitate its
adoption and spread.
The resistance of the ITU and Malamuds heroic if quixotic attempts are a parable 492

of the moral-technical imaginaries of opennessand indeed, his story draws
specifically on the usable past of Giordano Bruno.193 The ”bruno” project
demonstrates the gulf that exists between two models of legitimacythose of ISO
and the ITUin which standards represent the legal and legitimate consensus of a
regulated industry, approved by member nations, paid for and enforced by
governments, and implemented and adhered to by corporations.
Opposite ISO is the ad hoc, experimental style of Arpanet and Internet researchers, 493

in which standards are freely available and implementations represent the mode
of achieving consensus, rather than the outcome of the consensus. In reality, such
a rhetorical [pg171] opposition is far from absolute: many ISO standards are used on
the Internet, and ISO remains a powerful, legitimate standards organization. But
the clash of established (telecommunications) and emergent
(computer-networking) industries is an important context for understanding the
struggle between OSI and TCP/IP.
The need for standard networking protocols is unquestioned: interoperability is the 494

bread and butter of a network. Nonetheless, the goals of the OSI and the TCP/IP
protocols differed in important ways, with profound implications for the shape of
that interoperability. OSIs goals were completeness, control, and
comprehensiveness. OSI grew out of the telecommunications industry, which had

its policy outlines. The Federal Communications Commission issued two decisions (known as
”Computer 1” and ”Computer 2”) that attempted to deal with this conflict by trying to define what
counted as voice communication and what as data.
190Brock, The Second Information Revolution, chap. 10.
191Drake, ”The Internet Religious War.”
192Malamud, Exploring the Internet; see also Michael M. J. Fischer, ”Worlding Cyberspace.”
193The usable past of Giordano Bruno is invoked by Malamud to signal the heretical nature of his own
commitment to openly publishing standards that ISO was opposed to releasing. Brunos fate at the
hands of the Roman Inquisition hinged in some part on his acceptance of the Copernican cosmology,
so he has been, like Galileo, a natural figure for revolutionary claims during the 1990s.

Two Bits Christopher M. Kelty 130

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

a long history of confronting the vicissitudes of linking up networks and facilitating
communication around the world, a problem that required a strong process of
consensus and negotiation among large, powerful, government-run entities, as
well as among smaller manufacturers and providers. OSIs feet were firmly planted
in the international standardization organizations like OSI and the ITU (an
organization as old as telecommunications itself, dating to the 1860s).
Even if they were oft-mocked as slow, bureaucratic, or cumbersome, the processes 495

of ISO and ITUbased in consensus, international agreement, and thorough
technical specificationare processes of unquestioned legitimacy. The
representatives of nations and corporations who attend ISO and ITU standards
discussions, and who design, write, and vote on these standards, are usually not
bureaucrats, but engineers and managers directly concerned with the needs of
their constituency. The consensus-oriented process means that ISO and ITU
standards attempt to satisfy all members goals, and as such they tend to be very
large, complex, and highly specific documents. They are generally sold to
corporations and others who need to use them, rather than made freely available,
a fact that until recently reflected their legitimacy, rather than lack thereof.
TCP/IP, on the other hand, emerged from very different conditions.194 These 496

protocols were part of a Department of Defense-funded experimental research
project: Arpanet. The initial Arpanet protocols (the Network Control Protocol, or
NCP) were insufficient, and TCP/IP was an experiment in interconnecting two
different ”packet-switched networks”: the ground-line-based Arpanet network and
a radio-wave network called Packet Radio.195 The [pg172] problem facing the
designers was not how to accommodate everyone, but merely how to solve a
specific problem: interconnecting two technically diverse networks, each with
autonomous administrative boundaries, but forcing neither of them to give up the
system or the autonomy.
Until the mid-1980s, the TCP/IP protocols were resolutely research-oriented, and 497

not the object of mainstream commercial interest. Their development reflected a
core set of goals shared by researchers and ultimately promoted by the central
funding agency, the Department of Defense. The TCP/IP protocols are often
referred to as enabling packet-switched networks, but this is only partially correct;
the real innovation of this set of protocols was a design for an ”inter-network,” a
system that would interconnect several diverse and autonomous networks
(packet-switched or circuit-switched), without requiring them to be transformed,
redesigned, or standardizedin short, by requiring only standardization of the
intercommunication between networks, not standardization of the network itself.
In the first paper describing the protocol Robert Kahn and Vint Cerf motivated the
need for TCP/IP thus: ”Even though many different and complex problems must be
solved in the design of an individual packet-switching network, these problems are
manifestly compounded when dissimilar networks are interconnected. Issues arise
which may have no direct counterpart in an individual network and which strongly
influence the way in which Internetwork communication can take place.”196
194Abbate, Inventing the Internet; Salus, Casting the Net; Galloway, Protocol; and Brock, The Second
Information Revolution. For practitioner histories, see Kahn et al., ”The Evolution of the Internet as a
Global Information System”; Clark, ”The Design Philosophy of the DARPA Internet Protocols.”
195Kahn et al., ”The Evolution of the Internet as a Global Information System,” 134-140; Abbate,
Inventing the Internet, 114-36.
196Kahn and Cerf, ”A Protocol for Packet Network Intercommunication,” 637.

Two Bits Christopher M. Kelty 131

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

The explicit goal of TCP/IP was thus to share computer resources, not necessarily 498

to connect two individuals or firms together, or to create a competitive market in
networks or networking software. Sharing between different kinds of networks
implied allowing the different networks to develop autonomously (as their creators
and maintainers saw best), but without sacrificing the ability to continue sharing.
Years later, David Clark, chief Internet engineer for several years in the 1980s,
gave a much more explicit explanation of the goals that led to the TCP/IP protocols.
In particular, he suggested that the main overarching goal was not just to share
resources but ”to develop an effective technique for multiplexed utilization of
existing interconnected networks,” and he more explicitly stated the issue of
control that faced the designers: ”Networks represent administrative boundaries
of control, and it was an ambition of this project to come to grips with the problem
of integrating a number [pg173] of separately administrated entities into a common
utility.”197 By placing the goal of expandability first, the TCP/IP protocols were
designed with a specific kind of simplicity in mind: the test of the protocols
success was simply the ability to connect.
By setting different goals, TCP/IP and OSI thus differed in terms of technical details; 499

but they also differed in terms of their context and legitimacy, one being a product
of international-standards bodies, the other of military-funded research
experiments. The technical and organizational differences imply different
processes for standardization, and it is the peculiar nature of the so-called
Requests for Comments (RFC) process that gave TCP/IP one of its most distinctive
features. The RFC system is widely recognized as a unique and serendipitous
outcome of the research process of Arpanet.198 In a thirty-year retrospective
(published, naturally, as an RFC: RFC 2555), Vint Cerf says, ”Hiding in the history
of the RFCs is the history of human institutions for achieving cooperative work.”
He goes on to describe their evolution over the years: ”When the RFCs were first
produced, they had an almost 19th century character to themletters exchanged in
public debating the merits of various design choices for protocols in the ARPANET.
As email and bulletin boards emerged from the fertile fabric of the network, the
far-flung participants in this historic dialog began to make increasing use of the
online medium to carry out the discussionreducing the need for documenting the
debate in the RFCs and, in some respects, leaving historians somewhat
impoverished in the process. RFCs slowly became conclusions rather than
debates.”199

Increasingly, they also became part of a system of discussion and implementation 500

in which participants created working software as part of an experiment in
developing the standard, after which there was more discussion, then perhaps
more implementation, and finally, a standard. The RFC process was a way to
condense the process of standardization and validation into implementation;
which is to say, the proof of open systems was in the successful connection of
diverse networks, and the creation of a standard became a kind of ex post facto
rubber-stamping of this demonstration. Any further improvement of the standard
hinged on an improvement on the standard implementation because the
standards that resulted were freely and widely available: ”A user could request an

197Clark, ”The Design Philosophy of the DARPA Internet Protocols,” 54-55.
198RFCs are archived in many places, but the official site is RFC Editor, ⌜ http://www.rfc-editor.org/ ⌟ .
199RFC Editor, RFC 2555, 6.

Two Bits Christopher M. Kelty 132

http://www.rfc-editor.org/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

RFC by email from his host computer and have it automatically delivered to his
mailbox. . . . RFCs were also shared freely with official standards [pg174] bodies,
manufacturers and vendors, other working groups, and universities. None of the
RFCs were ever restricted or classified. This was no mean feat when you consider
that they were being funded by DoD during the height of the Cold War.”200

The OSI protocols were not nearly so freely available. The ironic reversalthe 501

transparency of a military-research program versus the opacity of a Geneva-based
international-standards organizationgoes a long way toward explaining the
reasons why geeks might find the story of TCP/IPs success to be so appealing. It is
not that geeks are secretly militaristic, but that they delight in such surprising
reversals, especially when those reversals exemplify the kind of ad hoc, clever
solution to problems of coordination that the RFC process does. The RFC process is
not the only alternative to a consensus-oriented model of standardization
pioneered in the international organizations of Geneva, but it is a specific response
to a reorientation of power and knowledge that was perhaps more ”intuitively
obvious” to the creators of Arpanet and the Internet, with its unusual design goals
and context, than it would have been to the purveyors of telecommunications
systems with over a hundred years of experience in connecting people in very
specific and established ways.

Success as Failure 502

By 1985, OSI was an official standard, one with widespread acceptance by 503

engineers, by the government and military (the ”GOSIP” standard), and by a
number of manufacturers, the most significant of which was General Motors, with
its Manufacturing Automation Protocol (MAP). In textbooks and handbooks of the
late 1980s and early 1990s, OSI was routinely referred to as the inevitable
standardwhich is to say, it had widespread legitimacy as the standard that
everyone should be implementingbut few implementations existed. Many of the
textbooks on networking from the late 1980s, especially those slanted toward a
theoretical introduction, give elaborate detail of the OSI reference modela
generation of students in networking was no doubt trained to understand the
world in terms of OSIbut the ambivalence continued. Indeed, the most enduring
legacy of the creation of the OSI protocols is not the protocols themselves (some
of which, like ASN.1, are still [pg175] widely used today), but the pedagogical model:
the ”7 layer stack” that is as ubiquitous in networking classes and textbooks as
UNIX is in operating-systems classes.201

But in the late 1980s, the ambivalence turned to confusion. With OSI widely 504

recognized as the standard, TCP/IP began to show up in more and more actually
existing systems. For example, in Computer Network Architectures and Protocols,
Carl Sunshine says, ”Now in the late 1980s, much of the battling seems over.
CCITT and ISO have aligned their efforts, and the research community seems

200Ibid., 11.
201This can be clearly seen, for instance, by comparing the various editions of the main
computer-networking textbooks: cf. Tanenbaum, Computer Networks, 1st ed. (1981), 2d ed. (1988),
3d ed. (1996), and 4th ed. (2003); Stallings, Data and Computer Communications, 1st ed. (1985), 2d
ed. (1991), [pg332] 3d ed. (1994), 4th ed. (1997), and 5th ed. (2004); and Comer, Internetworking with
TCP/IP (four editions between 1991 and 1999).

Two Bits Christopher M. Kelty 133

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

largely to have resigned itself to OSI.” But immediately afterward he adds: ”It is
ironic that while a consensus has developed that OSI is indeed inevitable, the
TCP/IP protocol suite has achieved widespread deployment, and now serves as a
de facto interoperability standard. . . . It appears that the vendors were unable to
bring OSI products to market quickly enough to satisfy the demand for
interoperable systems, and TCP/IP were there to fill the need.”202

The more implementations that appeared, the less secure the legitimate standard 505

seemed to be. By many accounts the OSI specifications were difficult to
implement, and the yearly networking-industry ”Interop” conferences became a
regular locale for the religious war between TCP/IP and OSI. The success of TCP/IP
over OSI reflects the reorientation of knowledge and power to which Free Software
is also a response. The reasons for the success are no doubt complex, but the
significance of the success of TCP/IP illustrates three issues: availability,
modifiability, and serendipity.
Availability The TCP/IP standards themselves were free to anyone and available 506

over TCP/IP networks, exemplifying one of the aspects of a recursive public: that
the only test of participation in a TCP/IP-based internetwork is the fact that one
possesses or has created a device that implements TCP/IP. Access to the network
is contingent on the interoperability of the networks. The standards were not
”published” in a conventional sense, but made available through the network itself,
without any explicit intellectual property restrictions, and without any fees or
restrictions on who could access them. By contrast, ISO standards are generally
not circulated freely, but sold for relatively high prices, as a source of revenue, and
under the general theory that only legitimate corporations or government
agencies would need access to them.
Related to the availability of the standards is the fact that the standards process 507

that governed TCP/IP was itself open to anyone, whether corporate, military or
academic. The structure of governance of the Internet Engineering Task Force (the
IETF) and the Internet Society (ISOC) allowed for anyone with the means available
to attend the ”working group” meetings that would decide on the standards that
would be approved. Certainly this does not mean that the engineers and defense
contractors responsible actively sought out corporate stakeholders or imagined
the system to be ”public” in any dramatic fashion; however, compared to the
system in place at most standards bodies (in which members are usually required
to be the representatives of corporations or governments), the IETF allowed
individuals to participate qua individuals.203

Modifiability Implementations of TCP/IP were widely available, bootstrapped from 508

machine to machine along with the UNIX operating system and other tools (e.g.,
the implementation of TCP/IP in BSD 4.2, the BSD version of UNIX), generally
including the source code. An existing implementation is a much more expressive
and usable object than a specification for an implementation, and though ISO
generally prepares reference implementations for such standards, in the case of
OSI there were many fewer implementations to work with or build on. Because
multiple implementations of TCP/IP already existed, it was easy to validate: did
your (modified) implementation work with the other existing implementations? By
202Sunshine, Computer Network Architectures and Protocols, 5.
203The structure of the IETF, the Internet Architecture Board, and the ISOC is detailed in Comer,
Internetworking with TCP/IP, 8-13; also in Schmidt and Werle, Coordinating Technology, 53-58.

Two Bits Christopher M. Kelty 134

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

contrast, OSI would provide independent validation, but the in situ validation
through connection to other OSI networks was much harder to achieve, there
being too few of them, or access being restricted. It is far easier to build on an
existing implementation and to improve on it piecemeal, or even to rewrite it
completely, using its faults as a template (so to speak), than it is to create an
implementation based solely on a standard. The existence of the TCP/IP protocols
in BSD 4.2 not only meant that people who installed that operating system could
connect to the Internet easily, at a time when it was by no means standard to be
able to do so, but it also meant that manufacturers or tinkerers could examine the
implementation in BSD 4.2 as the basis for a modified, or entirely new,
implementation.
Serendipity Perhaps most significant, the appearance of widespread and popular 509

applications that were dependent on TCP/IP [pg177] gave those protocols an inertia
that OSI, with relatively few such applications, did not have. The most important of
these by far was the World Wide Web (the http protocol, the HTML mark-up
language, and implementations of both servers, such as libwww, and clients, such
as Mosaic and Netscape). The basic components of the Web were made to work on
top of the TCP/IP networks, like other services that had already been designed (ftp,
telnet, gopher, archie, etc.); thus, Tim Berners-Lee, who co-invented the World
Wide Web, could also rely on the availability and openness of previous work for his
own protocols. In addition, Berners-Lee and CERN (the European Organization for
Nuclear Research) dedicated their work to the public domain more or less
immediately, essentially allowing anyone to do anything they wished with the
system they had cobbled together.204 From the perspective of the tension
between TCP/IP and OSI, the World Wide Web was thus what engineers call a ”killer
app,” because its existence actually drove individuals and corporations to make
decisions (in favor of TCP/IP) that it might not have made otherwise.

Conclusion 510

Openness and open systems are key to understanding the practices of Free 511

Software: the open-systems battles of the 1980s set the context for Free Software,
leaving in their wake a partially articulated infrastructure of operating systems,
networks, and markets that resulted from figuring out open systems. The failure to
create a standard UNIX operating system opened the door for Microsoft Windows
NT, but it also set the stage for the emergence of the Linux-operating-system
kernel to emerge and spread. The success of the TCP/IP protocols forced multiple
competing networking schemes into a single standardand a singular entity, the
Internetwhich carried with it a set of built-in goals that mirror the moral-technical
order of Free Software.
This ”infrastructure” is at once technical (protocols and standards and 512

implementations) and moral (expressing ideas about the proper order and
organization of commercial efforts to provide high-tech software, networks, and
computing power). As with the invention of UNIX, the opposition
commercial-noncommercial (or its doppelgangers public-private, profit-nonprofit,
capitalist-socialist, etc.) [pg178] doesnt capture the context. Constraints on the
204Message-ID:
⌜673c43e160cia758@sluvca.slu.edu. ⌟ See also Berners-Lee, Weaving the Web.

Two Bits Christopher M. Kelty 135

http://groups.google.com/groups?selm=673c43e160cia758@sluvca.slu.edu
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

ability to collaborate, compete, or withdraw are in the making here through the
technical and moral imaginations of the actors involved: from the corporate
behemoths like IBM to (onetime) startups like Sun to the independent academics
and amateurs and geeks with stakes in the new high-tech world of networks and
software.
The creation of a UNIX market failed. The creation of a legitimate international 513

networking standard failed. But they were local failures only. They opened the
doors to new forms of commercial practice (exemplified by Netscape and the
dotcom boom) and new kinds of politicotechnical fractiousness (ICANN, IPv6, and
”net neutrality”). But the blind spot of open systemsintellectual propertyat the
heart of these failures also provided the impetus for some geeks, entrepreneurs,
and lawyers to start figuring out the legal and economic aspects of Free Software,
and it initiated a vibrant experimentation with copyright licensing and with forms
of innovative coordination and collaboration built on top of the rapidly spreading
protocols of the Internet.

Two Bits Christopher M. Kelty 136

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

6.Writing Copyright Licenses 514

To protect your rights, we need to make restrictions that forbid anyone to deny 515

you these rights or to ask you to surrender the rights. - Preamble to the GNU
General Public License

The use of novel, unconventional copyright licenses is, without a doubt, the most 516

widely recognized and exquisitely refined component of Free Software. The GNU
General Public License (GPL), written initially by Richard Stallman, is often referred
to as a beautiful, clever, powerful ”hack” of intellectual-property lawwhen it isnt
being denounced as a viral, infectious object threatening the very fabric of
economy and society. The very fact that something so boring, so arcane, and so
legalistic as a copyright license can become an object of both devotional reverence
and bilious scorn means there is much more than fine print at stake. [pg180]

By the beginning of the twenty-first century, there were hundreds of different Free 517

Software licenses, each with subtle legal and technical differences, and an
enormous legal literature to explain their details, motivation, and impact.205 Free
Software licenses differ from conventional copyright licenses on software because
they usually restrict only the terms of distribution, while so-called End User
License Agreements (EULAs) that accompany most proprietary software restrict
what users can do with the software. Ethnographically speaking, licenses show up
everywhere in the field, and contemporary hackers are some of the most legally
sophisticated non-lawyers in the world. Indeed, apprenticeship in the world of
hacking is now impossible, as Gabriella Coleman has shown, without a long, deep
study of intellectual-property law.206

But how did it come to be this way? As with the example of sharing UNIX source 518

code, Free Software licenses are often explained as a reaction to expanding
intellectual-property laws and resistance to rapacious corporations. The text of the
GPL itself begins deep in such assumptions: ”The licenses for most software are
designed to take away your freedom to share and change it.”207 But even if
corporations are rapacious, sharing and modifying software are by no means
natural human activities. The ideas of sharing and of common property and its
relation to freedom must always be produced through specific practices of sharing,
before being defended. The GPL is a precise example of how geeks fit together the
practices of sharing and modifying software with the moral and technical
ordersthe social imaginariesof freedom and autonomy. It is at once an exquisitely
precise legal document and the expression of an idea of how software should be
made available, shareable, and modifiable.
In this chapter I tell the story of the creation of the GPL, the first Free Software 519

license, during a controversy over EMACS, a very widely used and respected piece
of software; the controversy concerned the reuse of bits of copyrighted source
code in a version of EMACS ported to UNIX. There are two reasons to retell this
story carefully. The first is simply to articulate the details of the origin of the Free

205The legal literature on Free Software expands constantly and quickly, and it addresses a variety of
different legal issues. Two excellent starting points are Vetter, ”The Collaborative Integrity of
Open-Source Software” and ”Infectious Open Source Software.”
206Coleman, ”The Social Construction of Freedom.”
207”The GNU General Public Licence, Version 2.0,” ⌜ http://www.gnu.org/licenses/old-licenses/gpl-2.0.html ⌟
.

Two Bits Christopher M. Kelty 137

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Software license itself, as a central component of Free Software, details that
should be understood in the context of changing copyright law and the UNIX and
open-systems struggles of the 1980s. Second, although the story of the GPL is also
an oft-told story of the ”hacker ethic,” the GPL is not an ”expression” of this [pg181]

ethic, as if the ethic were genotype to a legal phenotype. Opposite the familiar
story of ethics, I explain how the GPL was ”figured out” in the controversy over
EMACS, how it was formed in response to a complicated state of affairs, both legal
and technical, and in a medium new to all the participants: the online mailing lists
and discussion lists of Usenet and Arpanet.208

The story of the creation of the GNU General Public License ultimately affirms the 520

hacker ethic, not as a story of the ethical hacker genius, but as a historically
specific event with a duration and a context, as something that emerges in
response to the reorientation of knowledge and power, and through the active
modulation of existing practices among both human and nonhuman actors. While
hackers themselves might understand the hacker ethic as an unchanging set of
moral norms, their practices belie this belief and demonstrate how ethics and
norms can emerge suddenly and sharply, undergo repeated transformations, and
bifurcate into ideologically distinct camps (Free Software vs. Open Source), even
as the practices remain stable relative to them. The hacker ethic does not descend
from the heights of philosophy like the categorical imperativehackers have no
Kant, nor do they want one. Rather, as Manuel Delanda has suggested, the
philosophy of Free Software is the fact of Free Software itself, its practices and its
things. If there is a hacker ethic, it is Free Software itself, it is the recursive public
itself, which is much more than a list of norms.209 By understanding it in this way,
it becomes possible to track the proliferation and differentiation of the hacker ethic
into new and surprising realms, instead of assuming its static universal
persistence as a mere procedure that hackers execute.

Free Software Licenses, Once More with Feeling 521

In lecturing on liberalism in 1935, John Dewey said the following of Jeremy 522

Bentham: ”He was, we might say, the first great muck-raker in the field of law . . .
but he was more than that, whenever he saw a defect, he proposed a remedy. He
was an inventor in law and administration, as much so as any contemporary in

208All existing accounts of the hacker ethic come from two sources: from Stallman himself and from
the colorful and compelling chapter about Stallman in Steven Levys Hackers. Both acknowledge a
prehistory to the ethic. Levy draws it back in time to the MIT Tech Model Railroad Club of the 1950s,
while Stallman is more likely to describe it as reaching back to the scientific revolution or earlier. The
stories of early hackerdom at MIT are avowedly Edenic, and in them hackers live in a world of
uncontested freedom and collegial competitionsomething like a writers commune without the
alcohol or the brawling. There are stories about a printer whose software needed fixing but was only
available under a nondisclosure agreement; about a requirement to use passwords (Stallman
refused, chose <return> as his password, and hacked the system to encourage others to do the
same); about a programming war between different LISP machines; and about the replacement of
the Incompatible Time-Sharing System with DECs TOPS-20 (”Twenex”) operating system. These
stories are oft-told usable pasts, but they are not representative. Commercial constraints have
always been part of academic life in computer science and engineering: hardware and software were
of necessity purchased from commercial manufacturers and often controlled by them, even if they
offered ”academic” or ”educational” licenses.
209Delanda, ”Open Source.”

Two Bits Christopher M. Kelty 138

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

mechanical production.”210 Deweys point was that the liberal reforms attributed to
Bentham came not so much from his theories as from his direct involvement in
administrative and legal reformhis experimentation. [pg182] Whether or not
Benthams influence is best understood this way, it nonetheless captures an
important component of liberal reform in Europe and America that is also a key
component in the story of Free Software: that the route to achieving change is
through direct experiment with the system of law and administration.
A similar story might be told of Richard Stallman, hacker hero and founder of the 523

Free Software Foundation, creator of (among many other things) the GNU C
Compiler and GNU EMACS, two of the most widely used and tested Free Software
tools in the world. Stallman is routinely abused for holding what many perceive to
be ”dogmatic” or ”intractable” ideological positions about freedom and the right of
individuals to do what they please with software. While it is no doubt quite true
that his speeches and writings clearly betray a certain fervor and fanaticism, it
would be a mistake to assume that his speeches, ideas, or belligerent demands
concerning word choice constitute the real substance of his reform. In fact, it is the
software he has created and the licenses he has written and rewritten which are
the key to his Bentham-like inventiveness. Unlike Bentham, however, Stallman is
not a creator of law and administrative structure, but a hacker.
Stallmans GNU General Public License ”hacks” the federal copyright law, as is 524

often pointed out. It does this by taking advantage of the very strong rights
granted by federal law to actually loosen the restrictions normally associated with
ownership. Because the statutes grant owners strong powers to create restrictions,
Stallmans GPL contains the restriction that anybody can use the licensed material,
for any purpose, so long as they subsequently offer the same restriction. Hacks
(after which hackers are named) are clever solutions to problems or shortcomings
in technology. Hacks are work-arounds, clever, shortest-path solutions that take
advantage of characteristics of the system that may or may not have been
obvious to the people who designed it. Hacks range from purely utilitarian to
mischievously pointless, but they always depend on an existing system or tool
through which they achieve their point. To call Free Software a hack is to point out
that it would be nothing without the existence of intellectual-property law: it relies
on the structure of U.S. copyright law (USCğ17) in order to subvert it. Free
Software licenses are, in a sense, immanent to copyright lawsthere is nothing
illegal or even legally arcane about what they accomplishbut there is nonetheless
a kind of lingering sense [pg183] that this particular use of copyright was not how the
law was intended to function.
Like all software since the 1980 copyright amendments, Free Software is 525

copyrightableand whats more, automatically copyrighted as it is written (there is
no longer any requirement to register). Copyright law grants the author (or the
employer of the author) a number of strong rights over the dispensation of what
has been written: rights to copy, distribute, and change the work.211 Free
Softwares hack is to immediately make use of these rights in order to abrogate the

210Dewey, Liberalism and Social Action.
211Copyright Act of 1976, Pub. L. No. 94-553, 90 Stat. 2541, enacted 19 October 1976; and
Copyright Amendments, Pub. L. No. 96-517, 94 Stat. 3015, 3028 (amending ğ101 and ğ117, title 17,
United States Code, regarding computer programs), enacted 12 December 1980. All amendments
since 1976 are listed at ⌜ http://www.copyright.gov/title17/92preface.html ⌟ .

Two Bits Christopher M. Kelty 139

http://www.copyright.gov/title17/92preface.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

rights the programmer has been given, thus granting all subsequent licensees
rights to copy, distribute, modify, and use the copyrighted software. Some
licenses, like the GPL, add the further restriction that every licensee must offer the
same terms to any subsequent licensee, others make no such restriction on
subsequent uses. Thus, while statutory law suggests that individuals need strong
rights and grants them, Free Software licenses effectively annul them in favor of
other activities, such as sharing, porting, and forking software. It is for this reason
that they have earned the name ”copyleft.”212

This is a convenient ex post facto description, however. Neither Stallman nor 526

anyone else started out with the intention of hacking copyright law. The hack of
the Free Software licenses was a response to a complicated controversy over a
very important invention, a tool that in turn enabled an invention called EMACS.
The story of the controversy is well-known among hackers and geeks, but not
often told, and not in any rich detail, outside of these small circles.213

EMACS, the Extensible, Customizable, Self-documenting, 527

Real-time Display Editor

EMACS is a text editor; it is also something like a religion. As one of the two most 528

famous text editors, it is frequently lauded by its devoted users and attacked by
detractors who prefer its competitor (Bill Joys vi, also created in the late 1970s).
EMACS is more than just a tool for writing text; for many programmers, it was (and
still is) the principal interface to the operating system. For instance, it allows a
programmer not only to write a program but also to debug it, to compile it, to run
it, and to e-mail it to another user, [pg184] all from within the same interface. Whats
more, it allows users to quickly and easily write extensions to EMACS itself,
extensions that automate frequent tasks and in turn become core features of the
software. It can do almost anything, but it can also frustrate almost anyone. The
name itself is taken from its much admired extensibility: EMACS stands for ”editing
macros” because it allows programmers to quickly record a series of commands
and bundle them into a macro that can be called with a simple key combination. In
fact, it was one of the first editors (if not the first) to take advantage of keys like
ctrl and meta, as in the now ubiquitous ctrl-S familiar to users of non-free word
processors like Microsoft Word.
Appreciate the innovation represented by EMACS: before the UNIX-dominated 529

minicomputer era, there were very few programs for directly manipulating text on
a display. To conceive of source code as independent of a program running on a
machine meant first conceiving of it as typed, printed, or hand-scrawled code
which programmers would scrutinize in its more tangible, paper-based form.

212The history of the copyright and software is discussed in Litman, Digital Copyright; Cohen et al.,
Copyright in a Global Information Economy; and Merges, Menell, and Lemley, Intellectual Property in
the New Technological Age.
213See Wayner, Free for All; Moody, Rebel Code; and Williams, Free as in Freedom. Although this story
could be told simply by interviewing Stallman and James Gosling, both of whom are still alive and
active in the software world, I have chosen to tell it through a detailed analysis of the Usenet and
Arpanet archives of the controversy. The trade-off is between a kind of incomplete, fly-on-the-wall
access to a moment in history and the likely revisionist retellings of those who lived through it. All of
the messages referenced here are cited by their ”Message-ID,” which should allow anyone
interested to access the original messages through Google Groups (⌜ http://groups.google.com ⌟).

Two Bits Christopher M. Kelty 140

http://groups.google.com
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Editors that allowed programmers to display the code in front of them on a screen,
to manipulate it directly, and to save changes to those files were an innovation of
the mid- to late 1960s and were not widespread until the mid-1970s (and this only
for bleeding-edge academics and computer corporations). Along with a few early
editors, such as QED (originally created by Butler Lampson and Peter Deutsch, and
rewritten for UNIX by Ken Thompson), one of the most famous of these was TECO
(text editor and corrector), written by Dan Murphy for DECs PDP-1 computer in
1962-63. Over the years, TECO was transformed (ported and extended) to a wide
variety of machines, including machines at Berkeley and MIT, and to other DEC
hardware and operating systems. By the early 1970s, there was a version of TECO
running on the Incompatible Time-sharing System (ITS), the system in use at MITs
Artificial Intelligence (AI) Lab, and it formed the basis for EMACS. (Thus, EMACS
was itself conceived of as a series of macros for a separate editor: Editing MACroS
for TECO.)
Like all projects on ITS at the AI Lab, many people contributed to the extension 530

and maintenance of EMACS (including Guy Steele, Dave Moon, Richard Greenblatt,
and Charles Frankston), but there is a clear recognition that Stallman made it what
it was. The earliest AI Lab memo on EMACS, by Eugene Ciccarelli, says: ”Finally, of
all the people who have contributed to the development of EMACS, [pg185] and the
TECO behind it, special mention and appreciation go to Richard M. Stallman. He
not only gave TECO the power and generality it has, but brought together the
good ideas of many different Teco-function packages, added a tremendous amount
of new ideas and environment, and created EMACS. Personally one of the joys of
my avocational life has been writing Teco/EMACS functions; what makes this fun
and not painful is the rich set of tools to work with, all but a few of which have an
RMS chiseled somewhere on them.”214

At this point, in 1978, EMACS lived largely on ITS, but its reputation soon spread, 531

and it was ported to DECs TOPS-20 (Twenex) operating system and rewritten for
Multics and the MITs LISP machine, on which it was called EINE (Eine Is Not
EMACS), and which was followed by ZWEI (Zwei Was Eine Initially).
The proliferation of EMACS was both pleasing and frustrating to Stallman, since it 532

meant that the work fragmented into different projects, each of them EMACS-like,
rather than building on one core project, and in a 1981 report he said, ”The
proliferation of such superficial facsimiles of EMACS has an unfortunate confusing
effect: their users, not knowing that they are using an imitation of EMACS and
never having seen EMACS itself, are led to believe they are enjoying all the
advantages of EMACS. Since any real-time display editor is a tremendous
improvement over what they probably had before, they believe this readily. To
prevent such confusion, we urge everyone to refer to a nonextensible imitation of
EMACS as an ersatz EMACS. ”215

Thus, while EMACS in its specific form on ITS was a creation of Stallman, the idea 533

214Eugene Ciccarelli, ”An Introduction to the EMACS Editor,” MIT Artificial Intelligence Laboratory, AI
Lab Memo no. 447, 1978, 2.
215Richard Stallman, ”EMACS: The Extensible, Customizable Self-documenting Display Editor,” MIT
Artificial Intelligence Laboratory, AI Lab Memo no. 519a, 26 March 1981, 19. Also published as
Richard M. Stallman, ”EMACS: The Extensible, Customizable Self-documenting Display Editor,”
Proceedings of the ACM SIGPLAN SIGOA Symposium on Text Manipulation, 8-10 June (ACM, 1981),
147-56.

Two Bits Christopher M. Kelty 141

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

of EMACS or of any ”real-time display editor” was proliferating in different forms
and on different machines. The porting of EMACS, like the porting of UNIX, was
facilitated by both its conceptual design integrity and its widespread
availability.
The phrase ”nonextensible imitation” captures the combination of design 534

philosophy and moral philosophy that EMACS represented. Extensibility was not
just a useful feature for the individual computer user; it was a way to make the
improvements of each new user easily available equally to all by providing a
standard way for users to add extensions and to learn how to use new extensions
that were added (the ”self-documenting” feature of the system). The program had
a conceptual integrity that was compromised when it was copied imperfectly.
EMACS has a modular, extensible design [pg186] that by its very nature invites users
to contribute to it, to extend it, and to make it perform all manner of tasksto
literally copy and modify it, instead of imitating it. For Stallman, this was not only a
fantastic design for a text editor, but an expression of the way he had always done
things in the small-scale setting of the AI Lab. The story of Stallmans moral
commitments stresses his resistance to secrecy in software production, and
EMACS is, both in its design and in Stallmans distribution of it an example of this
resistance.
Not everyone shared Stallmans sense of communal order, however. In order to 535

facilitate the extension of EMACS through sharing, Stallman started something he
called the ”EMACS commune.” At the end of the 1981 report”EMACS: The
Extensible, Customizable Self-documenting Display Editor,” dated 26 Marchhe
explained the terms of distribution for EMACS: ”It is distributed on a basis of
communal sharing, which means that all improvements must be given back to me
to be incorporated and distributed. Those who are interested should contact me.
Further information about how EMACS works is available in the same way.”216

In another report, intended as a users manual for EMACS, Stallman gave more 536

detailed and slightly more colorful instructions:
EMACS does not cost anything; instead, you are joining the EMACS 537

software-sharing commune. The conditions of membership are that you must
send back any improvements you make to EMACS, including any libraries you
write, and that you must not redistribute the system except exactly as you got
it, complete. (You can also distribute your customizations, separately.) Please
do not attempt to get a copy of EMACS, for yourself or anyone else, by
dumping it off of your local system. It is almost certain to be incomplete or
inconsistent. It is pathetic to hear from sites that received incomplete copies
lacking the sources [source code], asking me years later whether sources are
available. (All sources are distributed, and should be on line at every site so
that users can read them and copy code from them). If you wish to give away
a copy of EMACS, copy a distribution tape from MIT, or mail me a tape and get
a new one.217

Because EMACS was so widely admired and respected, Stallman had a certain 538

216Richard Stallman, ”EMACS: The Extensible, Customizable Self-documenting Display Editor,” MIT
Artificial Intelligence Laboratory, AI Lab Memo no. 519a, 26 March 1981, 24.
217Richard M. Stallman, ”EMACS Manual for ITS Users,” MIT Artificial Intelligence Laboratory, AI Lab
Memo no. 554, 22 October 1981, 163.

Two Bits Christopher M. Kelty 142

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

amount of power over this commune. If it had been an obscure, nonextensible tool,
useful for a single purpose, no one would have heeded such demands, but
because EMACS was by nature the kind of tool that was both useful for all kinds of
tasks and [pg187] customizable for specific ones, Stallman was not the only person
who benefited from this communal arrangement. Two disparate sites may well
have needed the same macro extension, and therefore many could easily see the
social benefit in returning extensions for inclusion, as well as in becoming a kind of
co-developer of such a powerful system. As a result, the demands of the EMACS
commune, while unusual and autocratic, were of obvious value to the flock. In
terms of the concept of recursive public, EMACS was itself the tool through which it
was possible for users to extend EMACS, the medium of their affinity; users had a
natural incentive to share their contributions so that all might receive the
maximum benefit.
The terms of the EMACS distribution agreement were not quite legally binding; 539

nothing compelled participation except Stallmans reputation, his hectoring, or a
users desire to reciprocate. On the one hand, Stallman had not yet chosen to, or
been forced to, understand the details of the legal system, and so the EMACS
commune was the next best thing. On the other hand, the state of
intellectual-property law was in great flux at the time, and it was not clear to
anyone, whether corporate or academic, exactly what kind of legal arrangements
would be legitimate (the 1976 changes to copyright law were some of the most
drastic in seventy years, and a 1980 amendment made software copyrightable,
but no court cases had yet tested these changes). Stallmans ”agreement” was a
set of informal rules that expressed the general sense of mutual aid that was a
feature of both the design of the system and Stallmans own experience at the AI
Lab. It was an expression of the way Stallman expected others to behave, and his
attempts to punish or shame people amounted to informal enforcement of these
expectations. The small scale of the community worked in Stallmans favor.
At its small scale, Stallmans commune was confronting many of the same issues 540

that haunted the open-systems debates emerging at the same time, issues of
interoperability, source-code sharing, standardization, portability, and forking. In
particular, Stallman was acutely aware of the blind spot of open systems: the
conflict of moral-technical orders represented by intellectual property. While UNIX
vendors left intellectual-property rules unchallenged and simply assumed that
they were the essential ground rules of debate, Stallman made them the
substance of his experiment and, like Bentham, became something of a legal
muckraker as a result.
Stallmans communal model could not completely prevent the porting and forking 541

of software. Despite Stallmans request that imitators refer to their versions of
EMACS as ersatz EMACS, few did. In the absence of legal threats over a
trademarked term there was not much to stop people from calling their ports and
forks EMACS, a problem of success not unlike that of Kleenex or Xerox. Few people
took the core ideas of EMACS, implemented them in an imitation, and then called
it something else (EINE and ZWEI were exceptions). In the case of UNIX the
proliferation of forked versions of the software did not render them any less UNIX,
even when AT&T insisted on ownership of the trademarked name. But as time
went on, EMACS was ported, forked, rewritten, copied, or imitated on different
operating systems and different computer architectures in universities and

Two Bits Christopher M. Kelty 143

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

corporations around the world; within five or six years, many versions of EMACS
were in wide use. It was this situation of successful adoption that would provide
the context for the controversy that occurred between 1983 and 1985.

The Controversy 542

In brief the controversy was this: in 1983 James Gosling decided to sell his version 543

of EMACSa version written in C for UNIX called GOSMACSto a commercial software
vendor called Unipress. GOSMACS, the second most famous implementation of
EMACS (after Stallmans itself), was written when Gosling was a graduate student
at Carnegie Mellon University. For years, Gosling had distributed GOSMACS by
himself and had run a mailing list on Usenet, on which he answered queries and
discussed extensions. Gosling had explicitly asked people not to redistribute the
program, but to come back to him (or send interested parties to him directly) for
new versions, making GOSMACS more of a benevolent dictatorship than a
commune. Gosling maintained his authority, but graciously accepted revisions and
bug-fixes and extensions from users, incorporating them into new releases.
Stallmans system, by contrast, allowed users to distribute their extensions
themselves, as well as have them included in the ”official” EMACS. By 1983,
Gosling had decided he was unable to effectively maintain and support GOSMACSa
task he considered the proper role of a corporation.
For Stallman, Goslings decision to sell GOSMACS to Unipress was ”software 544

sabotage.” Even though Gosling had been substantially responsible for writing
GOSMACS, Stallman felt somewhat proprietorial toward this ersatz versionor, at
the very least, was irked that no noncommercial UNIX version of EMACS existed.
So Stallman wrote one himself (as part of a project he announced around the same
time, called GNU [GNUs Not UNIX], to create a complete non-AT&T version of
UNIX). He called his version GNU EMACS and released it under the same EMACS
commune terms. The crux of the debate hinged on the fact that Stallman used,
albeit ostensibly with permission, a small piece of Goslings code in his new version
of EMACS, a fact that led numerous people, including the new commercial
suppliers of EMACS, to cry foul. Recriminations and legal threats ensued and the
controversy was eventually resolved when Stallman rewrote the offending code,
thus creating an entirely ”Gosling-free” version that went on to become the
standard UNIX version of EMACS.
The story raises several questions with respect to the changing legal context. In 545

particular, it raises questions about the difference between ”law on the books” and
”law in action,” that is, the difference between the actions of hackers and
commercial entities, advised by lawyers and legally minded friends, and the text
and interpretation of statutes as they are written by legislators and interpreted by
courts and lawyers. The legal issues span trade secret, patent, and trademark, but
copyright is especially significant. Three issues were undecided at the time: the
copyrightability of software, the definition of what counts as software and what
doesnt, and the meaning of copyright infringement. While the controversy did not
resolve any of these issues (the first two would be resolved by Congress and the
courts, the third remains somewhat murky), it did clarify the legal issues for
Stallman sufficiently that he could leave behind the informal EMACS commune and

Two Bits Christopher M. Kelty 144

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

create the first version of a Free Software license, the GNU General Public License,
which first started appearing in 1985.
Goslings decision to sell GOSMACS, announced in April of 1983, played into a 546

growing EMACS debate being carried out on the GOSMACS mailing list, a Usenet
group called net.emacs. Since net.emacs was forwarded to the Arpanet via a
gateway maintained by John Gilmore at Sun Microsystems, a fairly large
community [pg190] of EMACS users were privy to Goslings announcement. Prior to
his declaration, there had been quite a bit of discussion regarding different
versions of EMACS, including an already ”commercial” version called CCA EMACS,
written by Steve Zimmerman, of Computer Corporation of America (CCA).218 Some
readers wanted comparisons between CCA EMACS and GOSMACS; others objected
that it was improper to discuss a commercial version on the list: was such activity
legitimate, or should it be carried out as part of the commercial companys support
activities? Goslings announcement was therefore a surprise, since it was already
perceived to be the ”noncommercial” version.
Date: Tue Apr 12 04:51:12 1983 547

Subject: EMACS goes commercial
The version of EMACS that I wrote is now available commercially through a company called

Unipress. . . . They will be doing development, maintenance and will be producing a real manual.
EMACS will be available on many machines (it already runs on VAXen under Unix and VMS, SUNs,
codatas, and Microsoft Xenix). Along with this, I regret to say that I will no longer be distributing it.
This is a hard step to take, but I feel that it is necessary. I can no longer look after it properly, there

are too many demands on my time. EMACS has grown to be completely unmanageable. Its
popularity has made it impossible to distribute free: just the task of writing tapes and stuffing them
into envelopes is more than I can handle.
The alternative of abandoning it to the public domain is unacceptable. Too many other programs

have been destroyed that way.
Please support these folks. The effort that they can afford to put into looking after EMACS is

directly related to the support they get. Their prices are reasonable.
James.219

The message is worth paying careful attention to: Goslings work of distributing the 548

tapes had become ”unmanageable,” and the work of maintenance, upkeep, and
porting (making it available on multiple architectures) is something he clearly
believes should be done by a commercial enterprise. Gosling, it is clear, did not
understand his effort in creating and maintaining EMACS to have emerged from a
communal sharing of bits of codeeven if he had done a Sisyphean amount of work
to incorporate all the changes and suggestions his users had madebut he did long

218Back in January of 1983, Steve Zimmerman had announced that the company he worked for, CCA,
had created a commercial version of EMACS called CCA EMACS (Message-ID:
⌜385@yetti.uucp ⌟). Zimmerman had not written this version entirely, but had taken a version
written by Warren Montgomery at Bell Labs (written for UNIX on PDP-11s) and created the version
that was being used by programmers at CCA. Zimmerman had apparently distributed it by ftp at
first, but when CCA determined that it might be worth something, they decided to exploit it
commercially, rather than letting Zimmerman distribute it ”freely.” By Zimmermans own [pg334]

account, this whole procedure required ensuring that there was nothing left of the original code by
Warren Montgomery that Bell Labs owned (Message-ID:
⌜730@masscomp.uucp ⌟).
219Message-ID for Gosling:
⌜bnews.sri-arpa.865. ⌟

Two Bits Christopher M. Kelty 145

http://groups.google.com/groups?selm=385@yetti.uucp
http://groups.google.com/groups?selm=730@masscomp.uucp
http://groups.google.com/groups?selm=bnews.sri-arpa.865
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

have a commitment [pg191] to distributing it for free, a commitment that resulted in
many people contributing bits and pieces to GOSMACS.
”Free,” however, did not mean ”public domain,” as is clear from his statement that 549

”abandoning it” to the public domain would destroy the program. The distinction is
an important one that was, and continues to be, lost on many sophisticated
members of net.emacs. Here, free means without charge, but Gosling had no
intention of letting that word suggest that he was not the author, owner,
maintainer, distributor, and sole beneficiary of whatever value GOSMACS had.
Public domain, by contrast, implied giving up all these rights.220 His decision to sell
GOSMACS to Unipress was a decision to transfer these rights to a company that
would then charge for all the labor he had previously provided for no charge (for
”free”). Such a distinction was not clear to everyone; many people considered the
fact that GOSMACS was free to imply that it was in the public domain.221 Not least
of these was Richard Stallman, who referred to Goslings act as ”software sabotage”
and urged people to avoid using the ”semi-ersatz” Unipress version.222

To Stallman, the advancing commercialization of EMACS, both by CCA and by 550

Unipress, was a frustrating state of affairs. The commercialization of CCA had been
of little concern so long as GOSMACS remained free, but with Goslings
announcement, there was no longer a UNIX version of EMACS available. To
Stallman, however, ”free” meant something more than either ”public domain” or
”for no cost.” The EMACS commune was designed to keep EMACS alive and
growing as well as to provide it for freeit was an image of community stewardship,
a community that had included Gosling until April 1983.
The disappearance of a UNIX version of EMACS, as well as the sudden commercial 551

interest in making UNIX into a marketable operating system, fed into Stallmans
nascent plan to create a completely new, noncommercial, non-AT&T UNIX
operating system that he would give away free to anyone who could use it. He
announced his intention on 27 September 1983:223

Free Unix! Starting this Thanksgiving I am going to write a complete Unix-compatible software 552

system called GNU (for Gnus Not Unix), and give it away free to everyone who can use it.
Contributions of time, money, programs and equipment are greatly needed.

His justifications were simple. 553

Why I Must Write GNU I consider that the golden rule requires that if I like a program I must share it 554

with other people who like it. I cannot in good conscience sign a nondisclosure agreement or a
software license agreement. So that I can continue to use computers without violating my principles,
I have decided to put together a sufficient body of free software so that I will be able to get along

220The thread starting at Message-ID:
⌜969@sdcsvax.uucp ⌟ contains one example of a discussion over the difference between
public-domain and commercial software.
221In particular, a thread discussing this in detail starts at Message-ID:
⌜172@encore.uucp ⌟ and includes Message-ID:
⌜137@osu-eddie.UUCP ⌟ , Message-ID:
⌜1127@godot.uucp ⌟ , Message-ID:
⌜148@osu-eddie.uucp ⌟ .
222Message-ID: bnews.sri-arpa.988.
223Message-ID:
⌜771@mit-eddie.uucp ⌟ , announced on net.unix-wizards and net.usoft.

Two Bits Christopher M. Kelty 146

http://groups.google.com/groups?selm=969@sdcsvax.uucp
http://groups.google.com/groups?selm=172@encore.uucp
http://groups.google.com/groups?selm=137@osu-eddie.UUCP
http://groups.google.com/groups?selm=1127@godot.uucp
http://groups.google.com/groups?selm=148@osu-eddie.uucp
http://groups.google.com/groups?selm=771@mit-eddie.uucp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

without any software that is not free.224

At that point, it is clear, there was no ”free software license.” There was the word 555

free, but not the term public domain. There was the ”golden rule,” and there was a
resistance to nondisclosure and license arrangements in general, but certainly no
articulated conception of copyleft of Free Software as a legally distinct entity. And
yet Stallman hardly intended to ”abandon it” to the public domain, as Gosling
suggested. Instead, Stallman likely intended to require the same EMACS commune
rules to apply to Free Software, rules that he would be able to control largely by
overseeing (in a nonlegal sense) who was sent or sold what and by demanding (in
the form of messages attached to the software) that any modifications or
improvements come in the form of donations. It was during the period 1983-85
that the EMACS commune morphed into the GPL, as Stallman began adding
copyrights and appending messages that made explicit what people could do with
the software.225

The GNU project initially received little attention, however; scattered messages to 556

net.unix-wizards over the course of 1983-84 periodically ask about the status and
how to contact them, often in the context of discussions of AT&T UNIX licensing
practices that were unfolding as UNIX was divested and began to market its own
version of UNIX.226 Stallmans original plan for GNU was to start with the core
operating system, the kernel, but his extensive work on EMACS and the sudden
need for a free EMACS for UNIX led him to start with a UNIX version of EMACS. In
1984 and into 1985, he and others began work on a UNIX version of GNU EMACS.
The two commercial versions of UNIX EMACS (CCA EMACS and Unipress EMACS)
continued to circulate and improve in parallel. DEC users meanwhile used the
original free version created by Stallman. And, as often happens, life went on:
Zimmerman left CCA in August [pg193] 1984, and Gosling moved to Sun, neither of
them remaining closely involved in the software they had created, but leaving the
new owners to do so.
By March 1985, Stallman had a complete version (version 15) of GNU EMACS 557

running on the BSD 4.2 version of UNIX (the version Bill Joy had helped create and
had taken with him to form the core of Suns version of UNIX), running on DECs VAX
computers. Stallman announced this software in a characteristically flamboyant
manner, publishing in the computer programmers monthly magazine Dr. Dobbs an
article entitled ”The GNU Manifesto.”227

Stallmans announcement that a free version of UNIX EMACS was available caused 558

some concern among commercial distributors. The main such concern was that
224Message-ID:
⌜771@mit-eddie.uucp ⌟ .
225Various other people seem to have conceived of a similar scheme around the same time (if the
Usenet archives are any guide), including Guido Van Rossum (who would later become famous for
the creation of the Python scripting language). The following is from Message-ID: 5568@mcvax.uucp:
/* This software is copyright (c) Mathematical Centre, Amsterdam,
* 1983.
* Permission is granted to use and copy this software, but not for * profit,
* and provided that these same conditions are imposed on any person
* receiving or using the software.
*/
226For example, Message-ID:
⌜6818@brl-tgr.arpa ⌟ .
227Stallman, ”The GNU Manifesto.” Available at GNUs Not Unix!, ⌜ http://www.gnu.org/gnu/manifesto.html ⌟
.

Two Bits Christopher M. Kelty 147

http://groups.google.com/groups?selm=771@mit-eddie.uucp
http://groups.google.com/groups?selm=6818@brl-tgr.arpa
http://www.gnu.org/gnu/manifesto.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

GNU EMACS 15.34 contained code marked ”Copyright (c) James Gosling,” code
used to make EMACS display on screen.228 The ”discovery” (not so difficult, since
Stallman always distributed the source code along with the binary) that this code
had been reused by Stallman led to extensive discussion among EMACS users of
issues such as the mechanics of copyright, the nature of infringement, the
definition of software, the meaning of public domain, the difference between
patent, copyright, and trade secret, and the mechanics of permission and its
grantingin short, a discussion that would be repeatedly recapitulated in nearly
every software and intellectual property controversy in the future.
The story of the controversy reveals the structure of rumor on the Usenet to be a 559

bit like the childs game of Chinese Whispers, except that the translations are all
archived. GNU EMACS 15.34 was released in March 1985. Between March and
early June there was no mention of its legal status, but around June 3 messages on
the subject began to proliferate. The earliest mention of the issue appeared not on
net.emacs, but on fa.info-vaxa newsgroup devoted to discussions of VAX computer
systems (”fa” stands for ”from Arpanet”)and it included a dialogue, between Ron
Natalie and Marty Sasaki, labeled ”GNU EMACS: How Public Domain?”: ”FOO, dont
expect that GNU EMACS is really in the public domain. UNIPRESS seems rather
annoyed that there are large portions of it that are marked copyright James
Gosling.”229 This message was reprinted on 4 June 1985 on net.emacs, with the
addendum: ”RMSs work is based on a version of Gosling code that existed before
Unipress got it. Gosling had put that code into the public domain. Any [pg194] work
taking off from the early Gosling code is therefore also public domain.”230

The addendum was then followed by an extensive reply from Zimmerman, whose 560

CCA EMACS had been based on Warren Montgomerys Bell Labs EMACS but
rewritten to avoid reusing the code, which may account for why his understanding
of the issue seems to have been both deep and troubling for him.

This is completely contrary to Goslings public statements. Before he made his 561

arrangements with Unipress, Goslings policy was that he would send a free
copy of his EMACS to anyone who asked, but he did not (publicly, at least) give
anyone else permission to make copies. Once Unipress started selling Goslings
EMACS, Gosling stopped distributing free copies and still did not grant anyone
else permission to make them; instead, he suggested that people buy EMACS
from Unipress. All versions of Goslings EMACS distributed by him carry his
copyright notice, and therefore none of them are in the public domain.
Removing copyright notices without the authors permission is, of course,
illegal. Now, a quick check of my GNU EMACS sources shows that sure enough,
a number of files have Goslings copyright notice in them. What this all means
is that unless RMS got written permission from Gosling to distribute his code,
all copies of GNU EMACS constitute violations of the copyright law. All those

228The main file of the controversy was called display.c. A version that was modified by Chris Torek
appears in net.sources, Message-ID:
⌜424@umcp-cs.uucp ⌟ . A separate example of a piece of code written by Gosling bears a note that
claims he had declared it public domain, but did not ”include the infamous Stallman anti-copyright
clause” (Message-ID:
⌜78@tove.uucp ⌟).
229Message-ID:
⌜7773@ucbvax.arpa. ⌟
230Message-ID:
⌜11400007@inmet.uucp ⌟ .

Two Bits Christopher M. Kelty 148

http://groups.google.com/groups?selm=424@umcp-cs.uucp
http://groups.google.com/groups?selm=78@tove.uucp
http://groups.google.com/groups?selm=7773@ucbvax.arpa
http://groups.google.com/groups?selm=11400007@inmet.uucp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

people making such copies, including those people who allow them to be
copied off their machines, could each be liable for large sums of money. I think
that RMS had better tell us if he has Goslings written permission to make these
copies. If so, why has he not stated this earlier (preferably in the distribution
itself) and thereby cleared up a potentially major point of confusion? If not,
why has he gone ahead and made many, many people liable for criminal
prosecution by recommending that they distribute this code without even
warning them of their liability? (People who distribute this code would be liable
even if they claim that they didnt see Goslings notices; the fact that the
notices are there is sufficient. ”Ignorance of the law is no excuse.”)
Now, I have nothing against free software; its a free country and people can do 562

what they want. Its just that people who do distribute free software had better
be sure that they have the legal right to do so, or be prepared to face the
consequences. (Jun 9, 1985).231

Stallman replied the next day. [pg195] 563

Nobody has any reason to be afraid to use or distribute GNU EMACS. It is well 564

known that I do not believe any software is anyones property. However, for the
GNU project, I decided it was necessary to obey the law. I have refused to look
at code I did not have permission to distribute. About 5% of GNU EMACS is
close to (though quite a bit changed from) an old version of Gosling EMACS. I
am distributing it for Fen Labalme, who received permission from Gosling to
distribute it. It is therefore legal for me to do so. To be scrupulously legal, I put
statements at the front of the files concerned, describing this situation.
I dont see anything I should warn people aboutexcept that Zimmerman is 565

going to try to browbeat them.232

Stallmans original defense for using Goslings code was that he had permission to 566

do so. According to him, Fen Labalme had received written permissionwhether to
make use of or to redistribute is not clearthe display code that was included in
GNU EMACS 15.34. According to Stallman, versions of Labalmes version of
Goslings version of EMACS were in use in various places (including at Labalmes
employer, Megatest), and Stallman and Labalme considered this a legally
defensible position.233

Over the next two weeks, a slew of messages attempted to pick apart and 567

understand the issues of copyright, ownership, distribution, and authorship.
Gosling wrote to clarify that GOSMACS had never been in the public domain, but
that ”unfortunately, two moves have left my records in a shambles,” and he is
therefore silent on the question of whether he granted permission.234 Goslings
claim could well be strategic: giving permission, had he done so, might have
angered Unipress, which expected exclusive control over the version he had sold;
by the same token, he may well have approved of Stallmans re-creation, but not

231Message-ID:
⌜717@masscomp.uucp ⌟ .
232Message-ID:
⌜4421@mit-eddie.uucp ⌟ .
233Message-ID:
⌜4486@mit-eddie.uucp ⌟ . Stallman also recounts this version of events in ”RMS Lecture at KTH
(Sweden),” 30 October 1986, ⌜ http://www.gnu.org/philosophy/stallman-kth.html ⌟ .
234Message-ID:
⌜2334@sun.uucp ⌟ .

Two Bits Christopher M. Kelty 149

http://groups.google.com/groups?selm=717@masscomp.uucp
http://groups.google.com/groups?selm=4421@mit-eddie.uucp
http://groups.google.com/groups?selm=4486@mit-eddie.uucp
http://www.gnu.org/philosophy/stallman-kth.html
http://groups.google.com/groups?selm=2334@sun.uucp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

have wanted to affirm this in any legally actionable way. Meanwhile, Zimmerman
relayed an anonymous message suggesting that some lawyers somewhere found
the ”third hand redistribution” argument was legally ”all wet.”235

Stallmans biggest concern was not so much the legality of his own actions as the 568

possibility that people would choose not to use the software because of legal
threats (even if such threats were issued only as rumors by former employees of
companies that distributed software they had written). Stallman wanted users not
only [pg196] to feel safe using his software but to adopt his view that software exists
to be shared and improved and that anything that hinders this is a loss for
everyone, which necessitates an EMACS commune.
Stallmans legal grounds for using Goslings code may or may not have been sound. 569

Zimmerman did his best throughout to explain in detail what kind of permission
Stallman and Labalme would have needed, drawing on his own experience with the
CCA lawyers and AT&T Bell Labs, all the while berating Stallman for not creating
the display code himself. Meanwhile, Unipress posted an official message that said,
”UniPress wants to inform the community that portions of the GNU EMACS program
are most definitely not public domain, and that use and/or distribution of the GNU
EMACS program is not necessarily proper.”236 The admittedly vague tone of the
message left most people wondering what that meantand whether Unipress
intended to sue anyone. Strategically speaking, the company may have wished to
maintain good will among hackers and readers of net.emacs, an audience likely
composed of many potential customers. Furthermore, if Gosling had given
permission to Stallman, then Unipress would themselves have been on uncertain
legal ground, unable to firmly and definitively threaten users of GNU EMACS with
legal action. In either case, the question of whether or not permission was needed
was not in questiononly the question of whether it had been granted.237

However, a more complicated legal issue also arose as a result, one concerning 570

the status of code contributed to Gosling by others. Fen Labalme wrote a message
to net.emacs, which, although it did not clarify the legal status of Goslings code
(Labalme was also unable to find his ”permission” from Gosling), did raise a
related issue: the fact that he and others had made significant contributions to
GOSMACS, which Gosling had incorporated into his version, then sold to Unipress
without their permission: ”As one of the others who helped to bring EMACS
[GOSMACS] up to speed, I was distressed when Jim sold the editor to UniPress.
This seemed to be a direct violation of the trust that I and others had placed in Jim
as we sent him our improvements, modifications, and bug fixes. I am especially
bothered by the general mercenary attitude surrounding EMACS which has taken
over from the once proud hacker ethicEMACS is a tool that can make all of our
lives better. Lets help it to grow!”238

235Message-ID:
⌜732@masscomp.uucp ⌟ .
236Message-ID:
⌜103@unipress.uucp ⌟ .
237With the benefit of hindsight, the position that software could be in the public domain also seems
legally uncertain, given that the 1976 changes to USCğ17 abolished the requirement to register and,
by the same token, to render uncertain the status of code contributed to Gosling and incorporated
into GOSMACS.
238Message-ID:
⌜18@megatest ⌟ . Note here the use of ”once proud hacker ethic,” which seems to confirm the
perpetual feeling that the ethic has been compromised.

Two Bits Christopher M. Kelty 150

http://groups.google.com/groups?selm=732@masscomp.uucp
http://groups.google.com/groups?selm=103@unipress.uucp
http://groups.google.com/groups?selm=18@megatest
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Labalmes implication, though he may not even have realized this himself, is that 571

Gosling may have infringed on the rights of others in selling the code to Unipress,
as a separate message from Joaquim Martillo makes clear: ”The differences
between current version of Unipress EMACS and Gnu EMACS display.c (a 19 page
module) is about 80%. For all the modules which Fen LeBalme [sic] gave RMS
permission to use, the differences are similar. Unipress is not even using the
disputed software anymore! Now, these modules contain code people like Chris
Torek and others contributed when Goslings emacs was in the public domain. I
must wonder whether these people would have contributed had they known their
freely-given code was going to become part of someones product.”239

Indeed, the general irony of this complicated situation was certainly not as evident 572

as it might have been given the emotional tone of the debates: Stallman was
using code from Gosling based on permission Gosling had given to Labalme, but
Labalme had written code for Gosling which Gosling had commercialized without
telling Labalmeconceivably, but not likely, the same code. Furthermore, all of
them were creating software that had been originally conceived in large part by
Stallman (but based on ideas and work on TECO, an editor written twenty years
before EMACS), who was now busy rewriting the very software Gosling had
rewritten for UNIX. The ”once proud hacker ethic” that Labalme mentions would
thus amount not so much to an explicit belief in sharing so much as a
fast-and-loose practice of making contributions and fixes without documenting
them, giving oral permission to use and reuse, and ”losing” records that may or
may not have existedhardly a noble enterprise.
But by 27 June 1985, all of the legal discussion was rendered moot when Stallman 573

announced that he would completely rewrite the display code in EMACS.
I have decided to replace the Gosling code in GNU EMACS, even though I still 574

believe Fen and I have permission to distribute that code, in order to keep
peoples confidence in the GNU project.
I came to this decision when I found, this night, that I saw how to rewrite the 575

parts that had seemed hard. I expect to have the job done by the weekend.240

On 5 July, Stallman sent out a message that said: [pg198] 576

Celebrate our independence from Unipress! 577

EMACS version 16, 100% Gosling-free, is now being tested at several places. It 578

appears to work solidly on Vaxes, but some other machines have not been
tested yet.241

The fact that it only took one week to create the code is a testament to Stallmans 579

widely recognized skills in creating great softwareit doesnt appear to have
indicated any (legal) threat or urgency. Indeed, even though Unipress seems also
to have been concerned about their own reputation, and despite the implication
made by Stallman that they had forced this issue to happen, they took a month to
respond. At that point, the Unipress employee Mike Gallaher wrote to insist,

239Message-ID:
⌜287@mit-athena.uucp ⌟ .
240Message-ID:
⌜4559@mit-eddie.uucp ⌟ .
241Message-ID:
⌜4605@mit-eddie.uucp ⌟ .

Two Bits Christopher M. Kelty 151

http://groups.google.com/groups?selm=287@mit-athena.uucp
http://groups.google.com/groups?selm=4559@mit-eddie.uucp
http://groups.google.com/groups?selm=4605@mit-eddie.uucp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

somewhat after the fact, that Unipress had no intention of suing anyoneas long as
they were using the Gosling-free EMACS version 16 and higher.

UniPress has no quarrel with the Gnu project. It bothers me that people seem 580

to think we are trying to hinder it. In fact, we hardly did or said much at all,
except to point out that the Gnumacs code had James Goslings copyright in it.
We have not done anything to keep anyone from using Gnumacs, nor do we
intend to now that it is ”Gosling-free” (version 16.56).
You can consider this to be an official statement from UniPress: There is 581

nothing in Gnumacs version 16.56 that could possibly cause UniPress to get
upset. If you were afraid to use Gnumacs because you thought we would
hassle you, dont be, on the basis of version 16.56.242

Both Stallman and Unipress received various attacks and defenses from observers 582

of the controversy. Many people pointed out that Stallman should get credit for
”inventing” EMACS and that the issue of him infringing on his own invention was
therefore ironic. Others proclaimed the innocence and moral character of Unipress,
which, it was claimed, was providing more of a service (support for EMACS) than
the program itself.
Some readers interpreted the fact that Stallman had rewritten the display code, 583

whether under pressure from Unipress or not, as confirmation of the ideas
expressed in ”The GNU Manifesto,” namely, that commercial software stifles
innovation. According to this logic, precisely because Stallman was forced to
rewrite the code, rather than build on something that he himself assumed he had
permission [pg199] to do, there was no innovation, only fear-induced caution.243 On
the other hand, latent within this discussion is a deep sense of propriety about
what people had created; many people, not only Stallman and Gosling and
Zimmerman, had contributed to making EMACS what it was, and most had done so
under the assumption, legally correct or not, that it would not be taken away from
them or, worse, that others might profit by it.
Goslings sale of EMACS is thus of a different order from his participation in the 584

common stewardship of EMACS. The distinction between creating software and
maintaining it is a commercial fiction driven in large part by the structure of
intellectual property. It mirrors the experience of open systems. Maintaining
software can mean improving it, and improving it can mean incorporating the
original work and ideas of others. To do so by the rules of a changing
intellectual-property structure forces different choices than to do so according to
an informal hacker ethic or an experimental ”commune.” One programmers minor
improvement is another programmers original contribution.

The Context of Copyright 585

The EMACS controversy occurred in a period just after some of the largest changes 586

to U.S. intellectual-property law in seventy years. Two aspects of this context are

242Message-ID:
⌜104@unipress.uucp ⌟ .
243Joaquim Martillo, Message-ID:
⌜287@mit-athena.uucpp ⌟ : ”Trying to forbid RMS from using discarded code so that he must spend
time to reinvent the wheel supports his contention that software hoarders are slowing down progress
in computer science.”

Two Bits Christopher M. Kelty 152

http://groups.google.com/groups?selm=104@unipress.uucp
http://groups.google.com/groups?selm=287@mit-athena.uucpp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

worth emphasizing: (1) practices and knowledge about the law change slowly and
do not immediately reflect the change in either the law or the strategies of actors;
(2) U.S. law creates a structural form of uncertainty in which the interplay between
legislation and case law is never entirely certain. In the former aspect,
programmers who grew up in the 1970s saw a commercial practice entirely
dominated by trade secret and patent protection, and very rarely by copyright;
thus, the shift to widespread use of copyright law (facilitated by the 1976 and
1980 changes to the law) to protect software was a shift in thinking that only
slowly dawned on many participants, even the most legally astute, since it was a
general shift in strategy as well as a statutory change. In the latter aspect, the
1976 and 1980 changes to the copyright law contained a number of uncertainties
that would take over a decade to be worked out in case law, issues such as the
copyrightability of software, the definition of software, and the meaning [pg200] of
infringement in software copyright, to say nothing of the impact of the codification
of fair use and the removal of the requirement to register (issues that arguably
went unnoticed until the turn of the millennium). Both aspects set the stage for
the EMACS controversy and Stallmans creation of the GPL.
Legally speaking, the EMACS controversy was about copyright, permission, and 587

the meanings of a public domain and the reuse of software (and, though never
explicitly mentioned, fair use). Software patenting and trade-secret law are not
directly concerned, but they nonetheless form a background to the controversy.
Many of the participants expressed a legal and conventional orthodoxy that
software was not patentable, that is, that algorithms, ideas, or fundamental
equations fell outside the scope of patent, even though the 1981 case Diamond v.
Diehr is generally seen as the first strong support by the courts for forcing the
United States Patent and Trademark Office to grant patents on software.244
Software, this orthodoxy went, was better protected by trade-secret law (a
state-by-state law, not a federal statute), which provided protection for any
intellectual property that an owner reasonably tried to maintain as a secret. The
trade-secret status of UNIX, for example, meant that all the educational licensees
who were given the source code of UNIX had agreed to keep it secret, even though
it was manifestly circulating the world over; one could therefore run afoul of
trade-secret rules if one looked at the source code (e.g., signed a nondisclosure
license or was shown the code by an employee) and then implemented something
similar.
By contrast, copyright law was rarely deployed in matters of software production. 588

The first copyright registration of software occurred in 1964, but the desirability of
relying on copyright over trade secret was uncertain well into the 1970s.245 Some
corporations, like IBM, routinely marked all source code with a copyright symbol.
Others asserted it only on the binaries they distributed or in the license
agreements. The case of software on the UNIX operating system and its
derivatives is particularly haphazard, and the existence of copyright notices by the
authors varies widely. An informal survey by Barry Gold singled out only James

244Diamond V. Diehr, 450 U.S. 175 (1981), the Supreme Court decision, forced the patent office to
grant patents on software. Interestingly, software patents had been granted much earlier, but went
either uncontested or unenforced. An excellent example is patent 3,568,156, held by Ken Thompson,
on regular expression pattern matching, granted in 1971.
245Calvin Mooers, in his 1975 article ”Computer Software and Copyright,” suggests that the IBM
unbundling decision opened the doors to thinking about copyright protection.

Two Bits Christopher M. Kelty 153

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Gosling, Walter Tichy (author of rcs), and the RAND Corporation as having
adequately labeled source code with copyright notices.246 Gosling was also the
first to register EMACS as copyrighted software in 1983, [pg201] while Stallman
registered GNU EMACS just after version 15.34 was released in May 1985.247

The uncertainty of the change from reliance on trade secret to reliance on 589

copyright is clear in some of the statements made by Stallman around the reuse of
Goslings code. Since neither Stallman nor Gosling sought to keep the program
secret in any formeither by licensing it or by requiring users to keep it secretthere
could be no claims of trade-secret status on either program. Nonetheless, there
was frequent concern about whether one had seen any code (especially code from
a UNIX operating system, which is covered by trade secret) and whether code that
someone else had seen, rewritten, or distributed publicly was therefore ”in the
public domain.”248 But, at the same time, Stallman was concerned that rewriting
Goslings display code would be too difficult: ”Any display code would have a
considerable resemblance to that display code, just by virtue of doing the same
job. Without any clear idea of exactly how much difference there would have to be
to reassure you users, I cannot tell whether the rewrite would accomplish that. The
law is not any guidance here. . . . Writing display code that is significantly different
is not easy.”249

Stallmans strategy for rewriting software, including his plan for the GNU operating 590

system, also involved ”not looking at” anyone elses code, so as to ensure that no
trade-secret violations would occur. Although it was clear that Goslings code was
not a trade secret, it was also not obvious that it was ”in the public domain,” an
assumption that might be made about other kinds of software protected by trade
secret. Under trade-secret rules, Goslings public distribution of GOSMACS appears
to give the green light for its reuse, but under copyright law, a law of strict liability,
any unauthorized use is a violation, regardless of how public the software may
have been.250

The fact of trade-secret protection was nonetheless an important aspect of the 591

EMACS controversy: the version of EMACS that Warren Montgomery had created at
Bell Labs (and on which Zimmermans CCA version would be based) was the
subject of trade-secret protection by AT&T, by virtue of being distributed with UNIX
and under a nondisclosure agreement. AT&T was at the time still a year away from

246Message-ID:
⌜933@sdcrdcf.uucp ⌟ .
247Goslings EMACS 264 (Stallman copied EMACS 84) is registered with the Library of Congress, as is
GNU EMACS 15.34. Goslings EMACS Library of Congress registration number is TX-3-407-458,
registered in 1992. Stallmans registration number is TX-1-575-302, registered in May 1985. The
listed dates are uncertain, however, since there are periodic re-registrations and updates.
248This is particularly confusing in the case of ”dbx.” Message-ID:
⌜4437@mit-eddie.uucp ⌟ , Message-ID:
⌜6238@shasta.arpa ⌟ , and Message-ID:
⌜730@masscomp.uucp ⌟ .
249Message-ID:
⌜4489@mit-eddie.uucp ⌟ .
250A standard practice well into the 1980s, and even later, was the creation of so-called clean-room
versions of software, in which new programmers and designers who had not seen the offending code
were hired to [pg336] re-implement it in order to avoid the appearance of trade-secret violation.
Copyright law is a strict liability law, meaning that ignorance does not absolve the infringer, so the
practice of ”clean-room engineering” seems not to have been as successful in the case of copyright,
as the meaning of infringement remains murky.

Two Bits Christopher M. Kelty 154

http://groups.google.com/groups?selm=933@sdcrdcf.uucp
http://groups.google.com/groups?selm=4437@mit-eddie.uucp
http://groups.google.com/groups?selm=6238@shasta.arpa
http://groups.google.com/groups?selm=730@masscomp.uucp
http://groups.google.com/groups?selm=4489@mit-eddie.uucp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

divestiture and thus unable to engage in commercial exploitation of the software.
When CCA sought to commercialize [pg202] the version of UNIX Zimmerman had
based on Montgomerys, it was necessary to remove any AT&T code in order to
avoid violating their trade-secret status. CCA in turn distributed their EMACS as
either binary or as source (the former costing about $1,000, the latter as much as
$7,000) and relied on copyright rather than trade-secret protection to prevent
unauthorized uses of their software.251

The uncertainty over copyright was thus in part a reflection of a changing strategy 592

in the computer-software industry, a kind of uneven development in which
copyright slowly and haphazardly came to replace trade secret as the main form of
intellectual-property protection. This switch had consequences for how
noncommercial programmers, researchers, and amateurs might interpret their
own work, as well as for the companies whose lawyers were struggling with the
same issues. Of course, copyright and trade-secret protection are not mutually
exclusive, but they structure the need for secrecy in different ways, and they make
different claims on issues like similarity, reuse, and modification.
The 1976 changes to copyright law were therefore extremely significant in setting 593

out a new set of boundaries and possibilities for intellectual-property arguments,
arguments that created a different kind of uncertainty from that of a changing
commercial strategy: a structural uncertainty created by the need for a case law
to develop around the statutory changes implemented by Congress.
The Copyright Act of 1976 introduced a number of changes that had been some 594

ten years in the making, largely organized around new technologies like
photocopier machines, home audiotaping, and the new videocassette recorders. It
codified fair-use rights, it removed the requirement to register, and it expanded
the scope of copyrightable materials considerably. It did not, however, explicitly
address software, an oversight that frustrated many in the computer industry, in
particular the young software industry. Pursuant to this oversight, the National
Commission on New Technological Uses of Copyright (CONTU) was charged with
making suggestions for changes to the law with respect to software. It was
therefore only in 1980 that Congress implemented these changes, adding software
to title 17 of the U.S. copyright statute as something that could be considered
copyrightable by law.252

The 1980 amendment to the copyright law answered one of three lingering 595

questions about the copyrightability of software: the simple question of whether it
was copyrightable material at all. Congress [pg203] answered yes. It did not,
however, designate what constituted ”software.” During the 1980s, a series of
court cases helped specify what counted as software, including source code,
object code (binaries), screen display and output, look and feel, and microcode

251Message-ID:
⌜730@masscomp.uucp ⌟ . AT&T was less concerned about copyright infringement than they were
about the status of their trade secrets. Zimmerman quotes a statement (from Message-ID:
⌜108@emacs.uucp ⌟) that he claims indicates this: ”Beginning with CCA EMACS version 162.36z,
CCA EMACS no longer contained any of the code from Mr. Montgomerys EMACS, or any methods or
concepts which would be known only by programmers familiar with BTL [Bell Labs] EMACS of any
version.” The statement did not mention copyright, but implied that CCA EMACS did not contain any
AT&T trade secrets, thus preserving their softwares trade-secret status. The fact that EMACS was a
conceptual designa particular kind of interface, a LISP interpreter, and extensibilitythat was very
widely imitated had no apparent bearing on the legal status of these secrets.
252CONTU Final Report, ⌜ http://digital-law-online.info/CONTU/contu1.html ⌟ (accessed 8 December 2006).

Two Bits Christopher M. Kelty 155

http://groups.google.com/groups?selm=730@masscomp.uucp
http://groups.google.com/groups?selm=108@emacs.uucp
http://digital-law-online.info/CONTU/contu1.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

and firmware.253 The final question, which the courts are still faced with
adjudicating, concerns how much similarity constitutes an infringement in each of
these cases. The implications of the codification of fair use and the requirement to
register continue to unfold even into the present.
The EMACS controversy confronts all three of these questions. Stallmans initial 596

creation of EMACS was accomplished under conditions in which it was unclear
whether copyright would apply (i.e., before 1980). Stallman, of course, did not
attempt to copyright the earliest versions of EMACS, but the 1976 amendments
removed the requirement to register, thus rendering everything written after 1978
automatically copyrighted. Registration represented only an additional effort to
assert ownership in cases of suspected infringement.
Throughout this period, the question of whether software was copyrightableor 597

copyrightedwas being answered differently in different cases: AT&T was relying on
trade-secret status; Gosling, Unipress, and CCA negotiated over copyrighted
material; and Stallman was experimenting with his ”commune.” Although the
uncertainty was answered statutorily by the 1980 amendment, not everyone
instantly grasped this new fact or changed practices based on it. There is ample
evidence throughout the Usenet archive that the 1976 changes were poorly
understood, especially by comparison with the legal sophistication of hackers in
the 1990s and 2000s. Although the law changed in 1980, practices changed more
slowly, and justifications crystallized in the context of experiments like that of GNU
EMACS.
Further, a tension emerged between the meaning of source code and the meaning 598

of software. On the one hand was the question of whether the source code or the
binary code was copyrightable, and on the other was the question of defining the
boundaries of software in a context wherein all software relies on other software in
order to run at all. For instance, EMACS was originally built on top of TECO, which
was referred to both as an editor and as a programming language; even seemingly
obvious distinctions (e.g., application vs. programming language) were not
necessarily always clear. [pg204] If EMACS was an application written in TECO qua
programming language, then it would seem that EMACS should have its own
copyright, distinct from any other program written in TECO. But if EMACS was an
extension or modification of TECO qua editor, then it would seem that EMACS was
a derivative work and would require the explicit permission of the copyright
holder.
Further, each version of EMACS, in order to be EMACS, needed a LISP interpreter in 599

order to make the extensible interface similar across all versions. But not all
versions used the same LISP interpreter. Goslings used an interpreter called
MOCKLISP (mlisp in the trademarked Unipress version), for instance. The question

253The cases that determine the meaning of the 1976 and 1980 amendments begin around 1986:
Whelan Associates, Inc. v. Jaslow Dental Laboratory, Inc., et al., U.S. Third Circuit Court of Appeals, 4
August 1986, 797 F.2d 1222, 230 USPQ 481, affirming that ”structure (or sequence or organization)”
of software is copyrightable, not only the literal software code; Computer Associates International,
Inc. v. Altai, Inc., U.S. Second Circuit Court of Appeals, 22 June 1992, 982 F.2d 693, 23 USPQ 2d 1241,
arguing that the structure test in Whelan was not sufficient to determine infringement and thus
proposing a three-part ”abstraction-filiation-comparison” test; Apple Computer, Inc. v. Microsoft
Corp, U.S. Ninth Circuit Court of Appeals, 1994, 35 F.3d 1435, finding that the ”desktop metaphor”
used in Macintosh and Windows was not identical and thus did not constitute infringement; Lotus
Development Corporation v. Borland International, Inc. (94-2003), 1996, 513 U.S. 233, finding that
the ”look and feel” of a menu interface was not copyrightable.

Two Bits Christopher M. Kelty 156

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

of whether the LISP interpreter was a core component of the software or an
”environment” needed in order to extend the application was thus also uncertain
and unspecified in the law. While both might be treated as software suitable for
copyright protection, both might also be understood as necessary components out
of which copyrightable software would be built.254

Whats more, both the 1976 and 1980 amendments are silent on the copyright 600

status of source code vs. binary code. While all the versions of EMACS were
distributed in binary, Stallman and Gosling both included the source to allow users
to modify it and extend it, but they differed on the proper form of redistribution.
The threshold between modifying software for oneself and copyright infringement
was not yet clear, and it hung on the meaning of redistribution. Changing the
software for use on a single computer might be necessary to get it to run, but by
the early days of the Arpanet, innocently placing that code in a public directory on
one computer could look like mass distribution.255

Finally, the question of what constitutes infringement was at the heart of this 601

controversy and was not resolved by law or by legal adjudication, but simply by
rewriting the code to avoid the question. Stallmans use of Goslings code, his claim
of third-hand permission, the presence or absence of written permission, the sale
of GOSMACS to Unipress when it most likely contained code not written by Gosling
but copyrighted in his nameall of these issues complicated the question of
infringement to the point where Stallmans only feasible option for continuing to
create software was to avoid using anyone elses code at all. Indeed, Stallmans
decision to use Goslings code (which he claims to have changed in significant
portions) might have come to nothing if he had unethically [pg205] and illegally
chosen not to include the copyright notice at all (under the theory that the code
was original to Stallman, or an imitation, rather than a portion of Goslings work).
Indeed, Chris Torek received Goslings permission to remove Goslings name and
copyright from the version of display.c he had heavily modified, but he chose not
to omit them: ”The only reason I didnt do so is that I feel that he should certainly
be credited as the inspiration (at the very least) for the code.”256 Likewise,
Stallman was most likely concerned to obey the law and to give credit where credit
was due, and therefore left the copyright notice attacheda clear case of blurred
meanings of authorship and ownership.
In short, the interplay between new statutes and their settlement in court or in 602

practice was a structural uncertainty that set novel constraints on the meaning of
copyright, and especially on the norms and forms of permission and reuse. GNU
EMACS 15.34 was the safest optiona completely new version that performed the
same tasks, but in a different manner, using different algorithms and code.
Even as it resolved the controversy, however, GNU EMACS posed new problems for 603

Stallman: how would the EMACS commune survive if it wasnt clear whether one
254The relationship between the definition of source and target befuddles software law to this day,
one of the most colorful examples being the DeCSS case. See Coleman, ”The Social Construction of
Freedom,” chap. 1: Gallery of CSS Descramblers, ⌜ http://www.cs.cmu.edu/ dst/DeCSS/gallery/ ⌟ .
255An interesting addendum here is that the manual for EMACS was also released at around the
same time as EMACS 16 and was available [pg337] as a TeX file. Stallman also attempted to deal with
the paper document in the same fashion (see Message-ID: 4734@mit-eddie.uucp, 19 July 1985), and
this would much later become a different and trickier issue that would result in the GNU Free
Documentation License.
256Message-ID:
⌜659@umcp-cs.uucp ⌟ .

Two Bits Christopher M. Kelty 157

http://www.cs.cmu.edu/~dst/DeCSS/gallery/
http://groups.google.com/groups?selm=659@umcp-cs.uucp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

could legally use another persons code, even if freely contributed? Was Goslings
action in selling work by others to Unipress legitimate? Would Stallman be able to
enforce its opposite, namely, prevent people from commercializing EMACS code
they contributed to him? How would Stallman avoid the future possibility of his
own volunteers and contributors later asserting that he had infringed on their
copyright?
By 1986, Stallman was sending out a letter that recorded the formal transfer of 604

copyright to the Free Software Foundation (which he had founded in late 1985),
with equal rights to nonexclusive use of the software.257 While such a demand for
the expropriation of copyright might seem contrary to the aims of the GNU project,
in the context of the unfolding copyright law and the GOSMACS controversy it
made perfect sense. Having been accused himself of not having proper permission
to use someone elses copyrighted material in his free version of GNU EMACS,
Stallman took steps to forestall such an event in the future.
The interplay between technical and legal issues and ”ethical” concerns was 605

reflected in the practical issues of fear, intimidation, and common-sense
(mis)understandings of intellectual-property [pg206] law. Zimmermans veiled threats
of legal liability were directed not only at Stallman but at anyone who was using
the program Stallman had written; breaking the law was, for Zimmerman, an
ethical lapse, not a problem of uncertainty and change. Whether or not such an
interpretation of the law was correct, it did reveal the mechanisms whereby a low
level of detailed knowledge about the lawand a law in flux, at that (not to mention
the litigious reputation of the U.S. legal system worldwide)often seemed to justify a
sense that buying software was simply a less risky option than acquiring it for free.
Businesses, not customers, it was assumed, would be liable for such infringements.
By the same token, the sudden concern of software programmers (rather than
lawyers) with the detailed mechanics of copyright law meant that a very large
number of people found themselves asserting common-sense notions, only to be
involved in a flame war over what the copyright law ”actually says.”
Such discussion has continued and grown exponentially over the last twenty years, 606

to the point that Free Software hackers are now nearly as deeply educated about
intellectual property law as they are about software code.258 Far from representing
the triumph of the hacker ethic, the GNU General Public License represents the
concrete, tangible outcome of a relatively wide-ranging cultural conversation
hemmed in by changing laws, court decisions, practices both commercial and
academic, and experiments with the limits and forms of new media and new
technology.

Conclusion 607

The rest of the story is quickly told: Stallman resigned from the AI Lab at MIT and 608

started the Free Software Foundation in 1985; he created a raft of new tools, but
ultimately no full UNIX operating system, and issued General Public License 1.0 in
1989. In 1990 he was awarded a MacArthur ”genius grant.” During the 1990s, he
257Message-ID:
⌜8605202356.aa12789@ucbvax.berkeley.edu ⌟ .
258See Coleman, ”The Social Construction of Freedom,” chap. 6, on the Debian New Maintainer
Process, for an example of how induction into a Free Software project stresses the legal as much as
the technical, if not more.

Two Bits Christopher M. Kelty 158

http://groups.google.com/groups?selm=8605202356.aa12789@ucbvax.berkeley.edu
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

was involved in various high-profile battles among a new generation of hackers;
those controversies included the debate around Linus Torvaldss creation of Linux
(which Stallman insisted be referred to as GNU/Linux), the forking of EMACS into
Xemacs, and Stallmans own participation inand exclusion fromconferences and
events devoted to Free Software. [pg207]

Between 1986 and 1990, the Free Software Foundation and its software became 609

extremely well known among geeks. Much of this had to do with the wealth of
software that they produced and distributed via Usenet and Arpanet. And as the
software circulated and was refined, so were the new legal constraints and the
process of teaching users to understand what they could and could not do with the
softwareand why it was not in the public domain.
Each time a new piece of software was released, it was accompanied by one or 610

more text files which explained what its legal status was. At first, there was a file
called DISTRIB, which contained an explanation of the rights the new owner had to
modify and redistribute the software.259 DISTRIB referenced a file called COPYING,
which contained the ”GNU EMACS copying permission notice,” also known as the
GNU EMACS GPL. The first of these licenses listed the copyright holder as Richard
Stallman (in 1985), but by 1986 all licenses referred to the Free Software
Foundation as the copyright holder.
As the Free Software Foundation released other pieces of software, the license was 611

renamedGNU CC GPL, a GNU Bison GPL, a GNU GDB GPL, and so on, all of which
were essentially the same termsin a file called COPYING, which was meant to be
distributed along with the software. In 1988, after the software and the licenses
had become considerably more widely available, Stallman made a few changes to
the license that relaxed some of the terms and specified others.260 This new
version would become the GNU GPL 1.0. By the time Free Software emerged into
the public consciousness in the late 1990s, the GPL had reached version 2.0, and
the Free Software Foundation had its own legal staff.
The creation of the GPL and the Free Software Foundation are often understood as 612

expressions of the hacker ethic, or of Stallmans ideological commitment to
freedom. But the story of EMACS and the complex technical and legal details that
structure it illustrate how the GPL is more than just a hack: it was a novel,
privately ordered legal ”commune.” It was a space thoroughly independent of, but
insinuated into the existing bedrock of rules and practices of the world of
corporate and university software, and carved out of the slippery, changing
substance of intellectual-property statutes. At a time when the giants of the
software industry were fighting to create a different kind of opennessone that
preserved and would even strengthen existing relations of intellectual propertythis
[pg208] hack was a radical alternative that emphasized the sovereignty not of a
national or corporate status quo, but of self-fashioning individuals who sought to
opt out of that national-corporate unity. The creation of the GNU GPL was not a
return to a golden age of small-scale communities freed from the dominating
structures of bureaucratic modernity, but the creation of something new out of
those structures. It relied on and emphasized, not their destruction, but their
stabilityat least until they are no longer necessary.
259For example, Message-ID:
⌜5745@ucbvax.arpa ⌟ .
260See Message-ID:
⌜8803031948.aa01085@venus.berkeley.edu ⌟ .

Two Bits Christopher M. Kelty 159

http://groups.google.com/groups?selm=5745@ucbvax.arpa
http://groups.google.com/groups?selm=8803031948.aa01085@venus.berkeley.edu
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

The significance of the GPL is due to its embedding within and emergence from 613

the legal and technical infrastructure. Such a practice of situated reworking is
what gives Free Softwareand perhaps all forms of engineering and creative
practiceits warp and weft. Stallmans decision to resign from the AI Lab and start
the Free Software Foundation is a good example; it allowed Stallman no only to
devote energy to Free Software but also to formally differentiate the organizations,
to forestall at least the potential threat that MIT (which still provided him with
office space, equipment, and network connection) might decide to claim
ownership over his work. One might think that the hacker ethic and the image of
self-determining free individuals would demand the total absence of organizations,
but it requires instead their proliferation and modulation. Stallman himself was
never so purely free: he relied on the largesse of MITs AI Lab, without which he
would have had no office, no computer, no connection to the network, and indeed,
for a while, no home.
The Free Software Foundation represents a recognition on his part that individual 614

and communal independence would come at the price of a legally and
bureaucratically recognizable entity, set apart from MIT and responsible only to
itself. The Free Software Foundation took a classic form: a nonprofit organization
with a hierarchy. But by the early 1990s, a new set of experiments would begin
that questioned the look of such an entity. The stories of Linux and Apache reveal
how these ventures both depended on the work of the Free Software Foundation
and departed from the hierarchical tradition it represented, in order to innovate
new similarly embedded sociotechnical forms of coordination.
The EMACS text editor is still widely used, in version 22.1 as of 2007, and ported to 615

just about every conceivable operating system. The controversy with Unipress has
faded into the distance, as newer and more intense controversies have faced
Stallman and Free Software, [pg209] but the GPL has become the most widely used
and most finely scrutinized of the legal licenses. More important, the EMACS
controversy was by no means the only one to have erupted in the lives of software
programmers; indeed, it has become virtually a rite of passage for young geeks to
be involved in such debates, because it is the only way in which the technical
details and the legal details that confront geeks can be explored in the requisite
detail. Not all such arguments end in the complete rewriting of source code, and
today many of them concern the attempt to convince or evangelize for the release
of source code under a Free Software license. The EMACS controversy was in some
ways a primal scenea traumatic one, for surethat determined the outcome of many
subsequent fights by giving form to the Free Software license and its uses.

Two Bits Christopher M. Kelty 160

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

7.Coordinating Collaborations 616

The final component of Free Software is coordination. For many participants and 617

observers, this is the central innovation and essential significance of Open Source:
the possibility of enticing potentially huge numbers of volunteers to work freely on
a software project, leveraging the law of large numbers, ”peer production,” ”gift
economies,” and ”self-organizing social economies.”261 Coordination in Free
Software is of a distinct kind that emerged in the 1990s, directly out of the issues
of sharing source code, conceiving open systems, and writing copyright licensesall
necessary precursors to the practices of coordination. The stories surrounding
these issues find continuation in those of the Linux operating-system kernel, of the
Apache Web server, and of Source Code Management tools (SCMs); together these
stories reveal how coordination worked and what it looked like in the 1990s.
Coordination is important because it collapses and resolves the distinction 618

between technical and social forms into a meaningful [pg211] whole for participants.
On the one hand, there is the coordination and management of people; on the
other, there is the coordination of source code, patches, fixes, bug reports,
versions, and distributionsbut together there is a meaningful technosocial practice
of managing, decision-making, and accounting that leads to the collaborative
production of complex software and networks. Such coordination would be
unexceptional, essentially mimicking long-familiar corporate practices of
engineering, except for one key fact: it has no goals. Coordination in Free Software
privileges adaptability over planning. This involves more than simply allowing any
kind of modification; the structure of Free Software coordination actually gives
precedence to a generalized openness to change, rather than to the following of
shared plans, goals, or ideals dictated or controlled by a hierarchy of
individuals.262

Adaptability does not mean randomness or anarchy, however; it is a very specific 619

way of resolving the tension between the individual curiosity and virtuosity of
hackers, and the collective coordination necessary to create and use complex
software and networks. No man is an island, but no archipelago is a nation, so to
speak. Adaptability preserves the ”joy” and ”fun” of programming without
sacrificing the careful engineering of a stable product. Linux and Apache should be
understood as the results of this kind of coordination: experiments with
adaptability that have worked, to the surprise of many who have insisted that
complexity requires planning and hierarchy. Goals and planning are the province
of governancethe practice of goal-setting, orientation, and definition of controlbut

261Research on coordination in Free Software forms the central core of recent academic work. Two of
the most widely read pieces, Yochai Benklers ”Coases Penguin” and Steven Webers The Success of
Open Source, are directed at classic research questions about collective action. Rishab Ghoshs
”Cooking Pot Markets” and Eric Raymonds The Cathedral and the Bazaar set many of the terms of
debate. Josh Lerners and Jean Tiroles ”Some Simple Economics of Open Source” was an early
contribution. Other important works on the subject are Feller et al., Perspectives on Free and Open
Source Software; Tuomi, Networks of Innovation; Von Hippel, Democratizing Innovation.
262On the distinction between adaptability and adaptation, see Federico Iannacci, ”The Linux
Managing Model,” ⌜ http://opensource.mit.edu/papers/iannacci2.pdf ⌟ . Matt Ratto characterizes the
activity of Linux-kernel developers as a ”culture of re-working” and a ”design for re-design,” and
captures the exquisite details of such a practice both in coding and in the discussion between
developers, an activity he dubs the ”pressure of openness” that ”results as a contradiction between
the need to maintain productive collaborative activity and the simultaneous need to remain open to
new development directions” (”The Pressure of Openness,” 112-38).

Two Bits Christopher M. Kelty 161

http://opensource.mit.edu/papers/iannacci2.pdf
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

adaptability is the province of critique, and this is why Free Software is a recursive
public: it stands outside power and offers powerful criticism in the form of working
alternatives. It is not the domain of the newafter all Linux is just a rewrite of
UNIXbut the domain of critical and responsive public direction of a collective
undertaking.
Linux and Apache are more than pieces of software; they are organizations of an 620

unfamiliar kind. My claim that they are ”recursive publics” is useful insofar as it
gives a name to a practice that is neither corporate nor academic, neither profit
nor nonprofit, neither governmental nor nongovernmental. The concept of
recursive public includes, within the spectrum of political activity, the creation,
modification, and maintenance of software, networks, and legal documents. While
a ”public” in most theories is a body of [pg212] people and a discourse that give
expressive form to some concern, ”recursive public” is meant to suggest that
geeks not only give expressive form to some set of concerns (e.g., that software
should be free or that intellectual property rights are too expansive) but also give
concrete infrastructural form to the means of expression itself. Linux and Apache
are tools for creating networks by which expression of new kinds can be
guaranteed and by which further infrastructural experimentation can be pursued.
For geeks, hacking and programming are variants of free speech and freedom of
assembly.

From UNIX to Minix to Linux 621

Linux and Apache are the two paradigmatic cases of Free Software in the 1990s, 622

both for hackers and for scholars of Free Software. Linux is a UNIX-like
operating-system kernel, bootstrapped out of the Minix operating system created
by Andrew Tanenbaum.263 Apache is the continuation of the original National
Center for Supercomputing Applications (NCSA) project to create a Web server
(Rob McCools original program, called httpd), bootstrapped out of a distributed
collection of people who were using and improving that software.
Linux and Apache are both experiments in coordination. Both projects evolved 623

decision-making systems through experiment: a voting system in Apaches case
and a structured hierarchy of decision-makers, with Linus Torvalds as benevolent
dictator, in Linuxs case. Both projects also explored novel technical tools for
coordination, especially Source Code Management (SCM) tools such as Concurrent
Versioning System (cvs). Both are also cited as exemplars of how ”fun,” ”joy,” or
interest determine individual participation and of how it is possible to maintain and
encourage that participation and mutual aid instead of narrowing the focus or
eliminating possible routes for participation.
Beyond these specific experiments, the stories of Linux and Apache are detailed 624

here because both projects were actively central to the construction and

263Linux is often called an operating system, which Stallman objects to on the theory that a kernel is
only one part of an operating system. Stallman suggests that it be called GNU/Linux to reflect the
use of GNU operating-system tools in combination with the Linux kernel. This not-so-subtle ploy to
take credit for Linux reveals the complexity of the distinctions. The kernel is at the heart of hundreds
of different ”distributions”such as Debian, Red Hat, SuSe, and Ubuntu Linuxall of which also use GNU
tools, but [pg338] which are often collections of software larger than just an operating system.
Everyone involved seems to have an intuitive sense of what an operating system is (thanks to the
pedagogical success of UNIX), but few can draw any firm lines around the object itself.

Two Bits Christopher M. Kelty 162

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

expansion of the Internet of the 1990s by allowing a massive number of both
corporate and noncorporate sites to cheaply install and run servers on the Internet.
Were Linux and Apache nothing more than hobbyist projects with a few thousand
[pg213] interested tinkerers, rather than the core technical components of an
emerging planetary network, they would probably not represent the same kind of
revolutionary transformation ultimately branded a ”movement” in 1998-99.
Linus Torvaldss creation of the Linux kernel is often cited as the first instance of 625

the real ”Open Source” development model, and it has quickly become the most
studied of the Free Software projects.264 Following its appearance in late 1991,
Linux grew quickly from a small, barely working kernel to a fully functional
replacement for the various commercial UNIX systems that had resulted from the
UNIX wars of the 1980s. It has become versatile enough to be used on desktop
PCs with very little memory and small CPUs, as well as in ”clusters” that allow for
massively parallel computing power.
When Torvalds started, he was blessed with an eager audience of hackers keen on 626

seeing a UNIX system run on desktop computers and a personal style of
encouragement that produced enormous positive feedback. Torvalds is often given
credit for creating, through his ”management style,” a ”new generation” of Free
Softwarea younger generation than that of Stallman and Raymond. Linus and
Linux are not in fact the causes of this change, but the results of being at the right
place at the right time and joining together a number of existing components.
Indeed, the title of Torvaldss semi-autobiographical reflection on LinuxJust for Fun:
The Story of an Accidental Revolutionarycaptures some of the character of its
genesis.
The ”fun” referred to in the title reflects the privileging of adaptability over 627

planning. Projects, tools, people, and code that were fun were those that were not
dictated by existing rules and ideas. Fun, for geeks, was associated with the
sudden availability, especially for university students and amateur hackers, of a
rapidly expanding underground world of networks and softwareUsenet and the
Internet especially, but also university-specific networks, online environments and
games, and tools for navigating information of all kinds. Much of this activity
occurred without the benefit of any explicit theorization, with the possible
exception of the discourse of ”community” (given print expression by Howard
Rheingold in 1993 and present in nascent form in the pages of Wired and Mondo
2000) that took place through much of the 1990s.265 The late 1980s and early

264Eric Raymond directed attention primarily to Linux in The Cathedral and the Bazaar. Many other
projects preceded Torvaldss kernel, however, including the tools that form the core of both UNIX and
the Internet: Paul Vixies implementation of the Domain Name System (DNS) known as BIND; Eric
Allmans sendmail for routing e-mail; the scripting languages perl (created by Larry Wall), python
(Guido von Rossum), and tcl/tk (John Ousterhout); the X Windows research project at MIT; and the
derivatives of the original BSD UNIX, FreeBSD and OpenBSD. On the development model of FreeBSD,
see Jorgensen, ”Putting It All in the Trunk” and ”Incremental and Decentralized Integration in
FreeBSD.” The story of the genesis of Linux is very nicely told in Moody, Rebel Code, and Williams,
Free as in Freedom; there are also a number of papersavailable through Free/Opensource Research
Community,
⌜http://freesoftware.mit.edu/that ⌟ analyze the development dynamics of the Linux kernel. See
especially Ratto, ”Embedded Technical Expression” and ”The Pressure of Openness.” I have
conducted much of my analysis of Linux by reading the Linux Kernel Mailing List archives,
⌜ http://lkml.org ⌟ . There are also annotated summaries of the Linux Kernel Mailing List discussions at
⌜ http://kerneltraffic.org ⌟ .
265Howard Rheingold, The Virtual Community. On the prehistory of this period and the cultural

Two Bits Christopher M. Kelty 163

http://freesoftware.mit.edu/%E2%80%94that
http://lkml.org
http://kerneltraffic.org
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

1990s gave rise to vast experimentation with the collaborative possibilities of the
Internet as a medium. Particularly attractive was [pg214] that this medium was built
using freely available tools, and the tools themselves were open to modification
and creative reuse. It was a style that reflected the quasi-academic and
quasi-commercial environment, of which the UNIX operating system was an
exemplar not pure research divorced from commercial context, nor entirely the
domain of commercial rapacity and intellectual property.
Fun included the creation of mailing lists by the spread of software such as list-serv 628

and majordomo; the collaborative maintenance and policing of Usenet; and the
creation of Multi-User Dungeons (MUDs) and MUD Object Orienteds (MOOs), both
of which gave game players and Internet geeks a way to co-create software
environments and discover many of the problems of management and policing
that thereby emerged.266 It also included the increasing array of ”information
services” that were built on top of the Internet, like archie, gopher, Veronica, WAIS,
ftp, IRCall of which were necessary to access the growing information wealth of the
underground community lurking on the Internet. The meaning and practice of
coordination in all of these projects was up for grabs: some were organized strictly
as university research projects (gopher), while others were more fluid and open to
participation and even control by contributing members (MOOs and MUDs).
Licensing issues were explicit in some, unclear in some, and completely ignored in
others. Some projects had autocratic leaders, while others experimented with
everything from representative democracy to anarchism.
During this period (roughly 1987 to 1993), the Free Software Foundation attained a 629

mythic cult statusprimarily among UNIX and EMACS users. Part of this status was
due to the superiority of the tools Stallman and his collaborators had already
created: the GNU C Compiler (gcc), GNU EMACS, the GNU Debugger (gdb), GNU
Bison, and loads of smaller utilities that replaced the original AT&T UNIX versions.
The GNU GPL had also acquired a life of its own by this time, having reached
maturity as a license and become the de facto choice for those committed to Free
Software and the Free Software Foundation. By 1991, however, the rumors of the
imminent appearance of Stallmans replacement UNIX operating system had
started to sound emptyit had been six years since his public announcement of his
intention. Most hackers were skeptical of Stallmans operating-system project,
even if they acknowledged the success of all the other tools necessary to create a
full-fledged operating system, and Stallman himself was stymied by the
development [pg215] of one particular component: the kernel itself, called GNU
Hurd.
Linus Torvaldss project was not initially imagined as a contribution to the Free 630

Software Foundation: it was a Helsinki university students late-night project in
learning the ins and outs of the relatively new Intel 386/486 microprocessor.
Torvalds, along with tens of thousands of other computer-science students, was
being schooled in UNIX through the pedagogy of Andrew Tanenbaums Minix,
Douglas Comers Xinu-PC, and a handful of other such teaching versions designed
to run on IBM PCs. Along with the classroom pedagogy in the 1980s came the
inevitable connection to, lurking on, and posting to the Usenet and Arpanet mailing

location of some key aspects, see Turner, From Counterculture to Cyberculture.
266Julian Dibbells ”A Rape in Cyberspace” and Sherry Turkles Life on the Screen are two classic
examples of the detailed forms of life and collaborative ethical creation that preoccupied denizens of
these worlds.

Two Bits Christopher M. Kelty 164

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

lists devoted to technical (and nontechnical) topics of all sorts.267 Torvalds was
subscribed, naturally, to comp.os.minix, the newsgroup for users of Minix.
The fact of Linus Torvaldss pedagogical embedding in the world of UNIX, Minix, the 631

Free Software Foundation, and the Usenet should not be underestimated, as it
often is in hagiographical accounts of the Linux operating system. Without this
relatively robust moral-technical order or infrastructure within which it was
possible to be at the right place at the right time, Torvaldss late-night dorm-room
project would have amounted to little more than thatbut the pieces were all in
place for his modest goals to be transformed into something much more
significant.
Consider his announcement on 25 August 1991: 632

Hello everybody out there using minixIm doing a (free) operating system (just 633

a hobby, wont be big and professional like gnu) for 386(486) AT clones. This
has been brewing since april, and is starting to get ready. Id like any feedback
on things people like/dislike in minix, as my OS resembles it somewhat (same
physical layout of the file-system (due to practical reasons) among other
things). Ive currently ported bash(1.08) and gcc(1.40), and things seem to
work. This implies that Ill get something practical within a few months, and Id
like to know what features most people would want. Any suggestions are
welcome, but I wont promise Ill implement them :-)
Linus . . . 634

PS. Yesits free of any minix code, and it has a multi-threaded fs. It is NOT 635

portable (uses 386 task switching etc), and it probably never will support
anything other than AT-harddisks, as thats all I have :-(.268

Torvaldss announcement is telling as to where his project fit into the existing 636

context: ”just a hobby,” not ”big and professional like gnu” (a comment that
suggests the stature that Stallman and the Free Software Foundation had
achieved, especially since they were in reality anything but ”big and professional”).
The announcement was posted to the Minix list and thus was essentially directed
at Minix users; but Torvalds also makes a point of insisting that the system would
be free of cost, and his postscript furthermore indicates that it would be free of
Minix code, just as Minix had been free of AT&T code.
Torvalds also mentions that he has ported ”bash” and ”gcc,” software created and 637

distributed by the Free Software Foundation and tools essential for interacting with
the computer and compiling new versions of the kernel. Torvaldss decision to use
these utilities, rather than write his own, reflects both the boundaries of his project
(an operating-system kernel) and his satisfaction with the availability and
reusability of software licensed under the GPL.
So the system is based on Minix, just as Minix had been based on 638

UNIXpiggy-backed or bootstrapped, rather than rewritten in an entirely different
fashion, that is, rather than becoming a different kind of operating system. And

267The yearly influx of students to the Usenet and Arpanet in September earned that month the title
”the longest month,” due to the need to train new users in use and etiquette on the newsgroups.
Later in the 1990s, when AOL allowed subscribers access to the Usenet hierarchy, it became known
as ”eternal September.” See ”September that Never Ended,” Jargon File,
⌜ http://catb.org/ esr/jargon/html/S/September-that-never-ended.html ⌟ .
268Message-ID:
⌜1991aug25.205708.9541@klaava.helsinki.fi ⌟ .

Two Bits Christopher M. Kelty 165

http://catb.org/~esr/jargon/html/S/September-that-never-ended.html
http://groups.google.com/groups?selm=1991aug25.205708.9541@klaava.helsinki.fi
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

yet there are clearly concerns about the need to create something that is not
Minix, rather than simply extending or ”debugging” Minix. This concern is key to
understanding what happened to Linux in 1991.
Tanenbaums Minix, since its inception in 1984, was always intended to allow 639

students to see and change the source code of Minix in order to learn how an
operating system worked, but it was not Free Software. It was copyrighted and
owned by Prentice Hall, which distributed the textbooks. Tanenbaum made the
casesimilar to Goslings case for Unipressthat Prentice Hall was distributing the
system far wider than if it were available only on the Internet: ”A point which I
dont think everyone appreciates is that making something available by FTP is not
necessarily the way to provide the widest distribution. The Internet is still a highly
elite group. Most computer users are NOT on it. . . . MINIX is also widely used in
Eastern Europe, Japan, Israel, South America, etc. Most of these people would
never have gotten it if there hadnt been a company selling it.”269

By all accounts, Prentice Hall was not restrictive in its sublicensing of the operating 640

system, if people wanted to create an ”enhanced” [pg217] version of Minix. Similarly,
Tanenbaums frequent presence on comp.os.minix testified to his commitment to
sharing his knowledge about the system with anyone who wanted itnot just paying
customers. Nonetheless, Torvaldss pointed use of the word free and his decision
not to reuse any of the code is a clear indication of his desire to build a system
completely unencumbered by restrictions, based perhaps on a kind of intuitive
folkloric sense of the dangers associated with cases like that of EMACS.270

The most significant aspect of Torvaldss initial message, however, is his request: 641

”Id like to know what features most people would want. Any suggestions are
welcome, but I wont promise Ill implement them.” Torvaldss announcement and
the subsequent interest it generated clearly reveal the issues of coordination and
organization that would come to be a feature of Linux. The reason Torvalds had so
many eager contributors to Linux, from the very start, was because he
enthusiastically took them off of Tanenbaums hands.

Design and Adaptability 642

Tanenbaums role in the story of Linux is usually that of the straw mana crotchety 643

old computer-science professor who opposes the revolutionary young Torvalds.
Tanenbaum did have a certain revolutionary reputation himself, since Minix was
used in classrooms around the world and could be installed on IBM PCs (something
no other commercial UNIX vendors had achieved), but he was also a natural target
for people like Torvalds: the tenured professor espousing the textbook version of

269Message-ID:
⌜12595@star.cs.vu.nl ⌟ .
270Indeed, initially, Torvaldss terms of distribution for Linux were more restrictive than the GPL,
including limitations on distributing it for a fee or for handling costs. Torvalds eventually loosened
the restrictions and switched to the GPL in February 1992. Torvaldss release notes for Linux 0.12 say,
”The Linux copyright will change: Ive had a couple of requests [pg339] to make it compatible with the
GNU copyleft, removing the you may not distribute it for money condition. I agree. I propose that the
copyright be changed so that it conforms to GNUpending approval of the persons who have helped
write code. I assume this is going to be no problem for anybody: If you have grievances (I wrote that
code assuming the copyright would stay the same) mail me. Otherwise The GNU copyleft takes
effect as of the first of February. If you do not know the gist of the GNU copyrightread it”
(⌜ http://www.kernel.org/pub/linux/kernel/Historic/old-versions/RELNOTES-0.12 ⌟).

Two Bits Christopher M. Kelty 166

http://groups.google.com/groups?selm=12595@star.cs.vu.nl
http://www.kernel.org/pub/linux/kernel/Historic/old-versions/RELNOTES-0.12
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

an operating system. So, despite the fact that a very large number of people were
using or knew of Minix as a UNIX operating system (estimates of comp.os.minix
subscribers were at 40,000), Tanenbaum was emphatically not interested in
collaboration or collaborative debugging, especially if debugging also meant
creating extensions and adding features that would make the system bigger and
harder to use as a stripped-down tool for teaching. For Tanenbaum, this point was
central: ”Ive been repeatedly offered virtual memory, paging, symbolic links,
window systems, and all manner of features. I have usually declined because I am
still trying to keep the system simple enough for students to understand. You can
put all this stuff in your version, but I wont [pg218] put it in mine. I think it is this
point which irks the people who say MINIX is not free, not the $60.”271

So while Tanenbaum was in sympathy with the Free Software Foundations goals 644

(insofar as he clearly wanted people to be able to use, update, enhance, and learn
from software), he was not in sympathy with the idea of having 40,000 strangers
make his software ”better.” Or, to put it differently, the goals of Minix remained
those of a researcher and a textbook author: to be useful in classrooms and cheap
enough to be widely available and usable on the largest number of cheap
computers.
By contrast, Torvaldss ”fun” project had no goals. Being a cocky nineteen-year-old 645

student with little better to do (no textbooks to write, no students, grants, research
projects, or committee meetings), Torvalds was keen to accept all the ready-made
help he could find to make his project better. And with 40,000 Minix users, he had
a more or less instant set of contributors. Stallmans audience for EMACS in the
early 1980s, by contrast, was limited to about a hundred distinct computers, which
may have translated into thousands, but certainly not tens of thousands of users.
Tanenbaums work in creating a generation of students who not only understood
the internals of an operating system but, more specifically, understood the
internals of the UNIX operating system created a huge pool of competent and
eager UNIX hackers. It was the work of porting UNIX not only to various machines
but to a generation of minds as well that set the stage for this eventand this is an
essential, though often overlooked component of the success of Linux.
Many accounts of the Linux story focus on the fight between Torvalds and 646

Tanenbaum, a fight carried out on comp.os.minix with the subject line ”Linux is
obsolete.”272 Tanenbaum argued that Torvalds was reinventing the wheel, writing
an operating system that, as far as the state of the art was concerned, was now
obsolete. Torvalds, by contrast, asserted that it was better to make something
quick and dirty that worked, invite contributions, and worry about making it state
of the art later. Far from illustrating some kind of outmoded conservatism on
Tanenbaums part, the debate highlights the distinction between forms of
coordination and the meanings of collaboration. For Tanenbaum, the goals of Minix
were either pedagogical or academic: to teach operating-system essentials or to
explore new possibilities in operating-system design. By this model, Linux could do
neither; it couldnt be used in the classroom because [pg219] it would quickly become
too complex and feature-laden to teach, and it wasnt pushing the boundaries of
research because it was an out-of-date operating system. Torvalds, by contrast,
271Message-ID:
⌜12667@star.cs.vu.nl ⌟ .
272Message-ID:
⌜12595@star.cs.vu.nl ⌟ . Key parts of the controversy were reprinted in Dibona et al. Open Sources.

Two Bits Christopher M. Kelty 167

http://groups.google.com/groups?selm=12667@star.cs.vu.nl
http://groups.google.com/groups?selm=12595@star.cs.vu.nl
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

had no goals. What drove his progress was a commitment to fun and to a largely
inarticulate notion of what interested him and others, defined at the outset almost
entirely against Minix and other free operating systems, like FreeBSD. In this sense,
it could only emerge out of the contextwhich set the constraints on its designof
UNIX, open systems, Minix, GNU, and BSD.
Both Tanenbaum and Torvalds operated under a model of coordination in which 647

one person was ultimately responsible for the entire project: Tanenbaum oversaw
Minix and ensured that it remained true to its goals of serving a pedagogical
audience; Torvalds would oversee Linux, but he would incorporate as many
different features as users wanted or could contribute. Very quicklywith a pool of
40,000 potential contributorsTorvalds would be in the same position Tanenbaum
was in, that is, forced to make decisions about the goals of Linux and about which
enhancements would go into it and which would not. What makes the story of
Linux so interesting to observers is that it appears that Torvalds made no decision:
he accepted almost everything.
Tanenbaums goals and plans for Minix were clear and autocratically formed. 648

Control, hierarchy, and restriction are after all appropriate in the classroom. But
Torvalds wanted to do more. He wanted to go on learning and to try out
alternatives, and with Minix as the only widely available way to do so, his decision
to part ways starts to make sense; clearly he was not alone in his desire to explore
and extend what he had learned. Nonetheless, Torvalds faced the problem of
coordinating a new project and making similar decisions about its direction. On this
point, Linux has been the subject of much reflection by both insiders and outsiders.
Despite images of Linux as either an anarchic bazaar or an autocratic dictatorship,
the reality is more subtle: it includes a hierarchy of contributors, maintainers, and
”trusted lieutenants” and a sophisticated, informal, and intuitive sense of ”good
taste” gained through reading and incorporating the work of co-developers.
While it was possible for Torvalds to remain in charge as an individual for the first 649

few years of Linux (1991-95, roughly), he eventually began to delegate some of
that control to people who would make decisions about different subcomponents
of the kernel. [pg220] It was thus possible to incorporate more of the ”patches”
(pieces of code) contributed by volunteers, by distributing some of the work of
evaluating them to people other than Torvalds. This informal hierarchy slowly
developed into a formal one, as Steven Weber points out: ”The final de facto grant
of authority came when Torvalds began publicly to reroute relevant submissions to
the lieutenants. In 1996 the decision structure became more formal with an
explicit differentiation between credited developers and maintainers. . . . If this
sounds very much like a hierarchical decision structure, that is because it is
onealbeit one in which participation is strictly voluntary.”273

Almost all of the decisions made by Torvalds and lieutenants were of a single kind: 650

whether or not to incorporate a piece of code submitted by a volunteer. Each such
decision was technically complex: insert the code, recompile the kernel, test to see
if it works or if it produces any bugs, decide whether it is worth keeping, issue a
new version with a log of the changes that were made. Although the various official
leaders were given the authority to make such changes, coordination was still
technically informal. Since they were all working on the same complex technical
object, one person (Torvalds) ultimately needed to verify a final version, containing

273Steven Weber, The Success of Open Source, 164.

Two Bits Christopher M. Kelty 168

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

all the subparts, in order to make sure that it worked without breaking.
Such decisions had very little to do with any kind of design goals or plans, only 651

with whether the submitted patch ”worked,” a term that reflects at once technical,
aesthetic, legal, and design criteria that are not explicitly recorded anywhere in
the projecthence, the privileging of adaptability over planning. At no point were
the patches assigned or solicited, although Torvalds is justly famous for
encouraging people to work on particular problems, but only if they wanted to. As
a result, the system morphed in subtle, unexpected ways, diverging from its
original, supposedly backwards ”monolithic” design and into a novel configuration
that reflected the interests of the volunteers and the implicit criteria of the
leaders.
By 1995-96, Torvalds and lieutenants faced considerable challenges with regard to 652

hierarchy and decision-making, as the project had grown in size and complexity.
The first widely remembered response to the ongoing crisis of benevolent
dictatorship in Linux was the creation of ”loadable kernel modules,” conceived as
a way to release some of the constant pressure to decide which patches would be
incorporated into the kernel. The decision to modularize [pg221] Linux was
simultaneously technical and social: the software-code base would be rewritten to
allow for external loadable modules to be inserted ”on the fly,” rather than all
being compiled into one large binary chunk; at the same time, it meant that the
responsibility to ensure that the modules worked devolved from Torvalds to the
creator of the module. The decision repudiated Torvaldss early opposition to
Tanenbaum in the ”monolithic vs. microkernel” debate by inviting contributors to
separate core from peripheral functions of an operating system (though the Linux
kernel remains monolithic compared to classic microkernels). It also allowed for a
significant proliferation of new ideas and related projects. It both contracted and
distributed the hierarchy; now Linus was in charge of a tighter project, but more
people could work with him according to structured technical and social rules of
responsibility.
Creating loadable modules changed the look of Linux, but not because of any 653

planning or design decisions set out in advance. The choice is an example of the
privileged adaptability of the Linux, resolving the tension between the curiosity
and virtuosity of individual contributors to the project and the need for hierarchical
control in order to manage complexity. The commitment to adaptability dissolves
the distinction between the technical means of coordination and the social means
of management. It is about producing a meaningful whole by which both people
and code can be coordinatedan achievement vigorously defended by kernel
hackers.
The adaptable organization and structure of Linux is often described in 654

evolutionary terms, as something without teleological purpose, but responding to
an environment. Indeed, Torvalds himself has a weakness for this kind of
explanation.

Lets just be honest, and admit that it [Linux] wasnt designed. 655

Sure, theres design toothe design of UNIX made a scaffolding for the system, 656

and more importantly it made it easier for people to communicate because
people had a mental model for what the system was like, which means that its
much easier to discuss changes.
But thats like saying that you know that youre going to build a car with four 657

Two Bits Christopher M. Kelty 169

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

wheels and headlightsits true, but the real bitch is in the details.
And I know better than most that what I envisioned 10 years ago has nothing 658

in common with what Linux is today. There was certainly no premeditated
design there.274

Adaptability does not answer the questions of intelligent design. Why, for example, 659

does a car have four wheels and two headlights? Often these discussions are
polarized: either technical objects are designed, or they are the result of random
mutations. What this opposition overlooks is the fact that design and the
coordination of collaboration go hand in hand; one reveals the limits and
possibilities of the other. Linux represents a particular example of such a
problematicone that has become the paradigmatic case of Free Softwarebut there
have been many others, including UNIX, for which the engineers created a system
that reflected the distributed collaboration of users around the world even as the
lawyers tried to make it conform to legal rules about licensing and practical
concerns about bookkeeping and support.
Because it privileges adaptability over planning, Linux is a recursive public: 660

operating systems and social systems. It privileges openness to new directions, at
every level. It privileges the right to propose changes by actually creating them
and trying to convince others to use and incorporate them. It privileges the right
to fork the software into new and different kinds of systems. Given what it
privileges, Linux ends up evolving differently than do systems whose life and
design are constrained by corporate organization, or by strict engineering design
principles, or by legal or marketing definitions of productsin short, by clear goals.
What makes this distinction between the goal-oriented design principle and the
principle of adaptability important is its relationship to politics. Goals and planning
are the subject of negotiation and consensus, or of autocratic decision-making;
adaptability is the province of critique. It should be remembered that Linux is by
no means an attempt to create something radically new; it is a rewrite of a UNIX
operating system, as Torvalds points out, but one that through adaptation can end
up becoming something new.

Patch and Vote 661

The Apache Web server and the Apache Group (now called the Apache Software 662

Foundation) provide a second illuminating example of the how and why of
coordination in Free Software of the 1990s. As with the case of Linux, the
development of the Apache project illustrates how adaptability is privileged over
planning [pg223] and, in particular, how this privileging is intended to resolve the
tensions between individual curiosity and virtuosity and collective control and
decision-making. It is also the story of the progressive evolution of coordination,
the simultaneously technical and social mechanisms of coordinating people and
code, patches and votes.
The Apache project emerged out of a group of users of the original httpd 663

(HyperText Transmission Protocol Daemon) Web server created by Rob McCool at
NCSA, based on the work of Tim Berners-Lees World Wide Web project at CERN.

274Quoted in Zack Brown, ”Kernel Traffic #146 for 17Dec2001,” Kernel Traffic,
⌜ http://www.kerneltraffic.org/kernel-traffic/kt20011217_146.html ⌟ ; also quoted in Federico Iannacci, ”The
Linux Managing Model,” ⌜ http://opensource.mit.edu/papers/iannacci2.pdf ⌟ .

Two Bits Christopher M. Kelty 170

http://www.kerneltraffic.org/kernel-traffic/kt20011217_146.html
http://opensource.mit.edu/papers/iannacci2.pdf
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Berners-Lee had written a specification for the World Wide Web that included the
mark-up language HTML, the transmission protocol http, and a set of libraries that
implemented the code known as libwww, which he had dedicated to the public
domain.275

The NCSA, at the University of Illinois, Urbana-Champaign, picked up both www 664

projects, subsequently creating both the first widely used browser, Mosaic,
directed by Marc Andreessen, and httpd. Httpd was public domain up until version
1.3. Development slowed when McCool was lured to Netscape, along with the
team that created Mosaic. By early 1994, when the World Wide Web had started to
spread, many individuals and groups ran Web servers that used httpd; some of
them had created extensions and fixed bugs. They ranged from university
researchers to corporations like Wired Ventures, which launched the online version
of its magazine (HotWired.com) in 1994. Most users communicated primarily
through Usenet, on the comp.infosystems.www.* newsgroups, sharing experiences,
instructions, and updates in the same manner as other software projects
stretching back to the beginning of the Usenet and Arpanet newsgroups.
When NCSA failed to respond to most of the fixes and extensions being proposed, 665

a group of several of the most active users of httpd began to communicate via a
mailing list called new-httpd in 1995. The list was maintained by Brian Behlendorf,
the webmaster for HotWired, on a server he maintained called hyperreal; its
participants were those who had debugged httpd, created extensions, or added
functionality. The list was the primary means of association and communication for
a diverse group of people from various locations around the world. During the next
year, participants hashed out issues related to coordination, to the identity of and
the processes involved in patching the ”new” httpd, version 1.3.276 [pg224]

Patching a piece of software is a peculiar activity, akin to debugging, but more like 666

a form of ex post facto design. Patching covers the spectrum of changes that can
be made: from fixing security holes and bugs that prevent the software from
compiling to feature and performance enhancements. A great number of the
patches that initially drew this group together grew out of needs that each
individual member had in making a Web server function. These patches were not
due to any design or planning decisions by NCSA, McCool, or the assembled group,
but most were useful enough that everyone gained from using them, because they
fixed problems that everyone would or could encounter. As a result, the need for a
coordinated new-httpd release was key to the groups work. This new version of
NCSA httpd had no name initially, but apache was a persistent candidate; the
somewhat apocryphal origin of the name is that it was ”a patchy
webserver.”277

275Message-ID:
⌜673c43e160C1a758@sluvca.slu.edu ⌟ . See also, Berners-Lee, Weaving the Web.
276The original Apache Group included Brian Behlendorf, Roy T. Fielding, Rob Harthill, David
Robinson, Cliff Skolnick, Randy Terbush, Robert S. Thau, Andrew Wilson, Eric Hagberg, Frank Peters,
and Nicolas Pioch. The mailing list new-httpd eventually became the Apache developers list. The
archives are available at ⌜ http://mail-archives.apache.org/mod_mbox/httpd-dev/ ⌟ and cited hereafter as
”Apache developer mailing list,” followed by sender, subject, date, and time.
277For another version of the story, see Moody, Rebel Code, 127-28. The official story honors the
Apache Indian tribes for ”superior skills in warfare strategy and inexhaustible endurance.” Evidence
of the concern of the original members over the use of the name is clearly visible in the archives of
the Apache project. See esp. Apache developer mailing list, Robert S. Thau, Subject: The political
correctness question . . . , 22 April 1995, 21:06 EDT.

Two Bits Christopher M. Kelty 171

http://groups.google.com/groups?selm=673c43e160C1a758@sluvca.slu.edu
http://mail-archives.apache.org/mod_mbox/httpd-dev/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

At the outset, in February and March 1995, the pace of work of the various 667

members of new-httpd differed a great deal, but was in general extremely rapid.
Even before there was an official release of a new httpd, process issues started to
confront the group, as Roy Fielding later explained: ”Apache began with a
conscious attempt to solve the process issues first, before development even
started, because it was clear from the very beginning that a geographically
distributed set of volunteers, without any traditional organizational ties, would
require a unique development process in order to make decisions.”278

The need for process arose more or less organically, as the group developed 668

mechanisms for managing the various patches: assigning them IDs, testing them,
and incorporating them ”by hand” into the main source-code base. As this
happened, members of the list would occasionally find themselves lost, confused
by the process or the efficiency of other members, as in this message from Andrew
Wilson concerning Cliff Skolnicks management of the list of bugs:

Cliff, can you concentrate on getting an uptodate copy of the 669

bug/improvement list please. Ive already lost track of just what the heck is
meant to be going on. Also whats the status of this pre-pre-pre release Apache
stuff. Its either a pre or it isnt surely? AND is the pre-pre-etc thing the same as
the thing Cliff is meant to be working on?
Just what the fsck is going on anyway? Ay, ay ay! Andrew Wilson.279 [pg225] 670

To which Rob Harthill replied, ”It is getting messy. I still think we should all 671

implement one patch at a time together. At the rate (and hours) some are working
we can probably manage a couple of patches a day. . . . If this is acceptable to the
rest of the group, I think we should order the patches, and start a systematic
processes of discussion, implementations and testing.”280

Some members found the pace of work exciting, while others appealed for slowing 672

or stopping in order to take stock. Cliff Skolnick created a system for managing the
patches and proposed that list-members vote in order to determine which patches
be included.281 Rob Harthill voted first.
Here are my votes for the current patch list shown at ⌜ http://www.hyperreal.com/httpd/patchgen/list.cgi ⌟ 673

Ill use a vote of -1 have a problem with it 0 havent tested it yet (failed to understand it or whatever)
+1 tried it, liked it, have no problem with it. [Here Harthill provides a list of votes on each patch.] If
this voting scheme makes sense, lets use it to filter out the stuff were happy with. A ”-1” vote should
veto any patch. There seems to be about 6 or 7 of us actively commenting on patches, so Id suggest
that once a patch gets a vote of +4 (with no vetos), we can add it to an alpha.282

Harthills votes immediately instigated discussion about various patches, further 674

voting, and discussion about the process (i.e., how many votes or vetoes were
needed), all mixed together in a flurry of e-mail messages. The voting process was
far from perfect, but it did allow some consensus on what ”apache” would be, that
is, which patches would be incorporated into an ”official” (though not very public)

278Mockus, Fielding, and Herbsleb, ”Two Case Studies of Open Source Software Development,” 3.
279Apache developer mailing list, Andrew Wilson, Subject: Re: httpd patch B5 updated, 14 March
1995, 21:49 GMT.
280Apache developer mailing list, Rob Harthill, Subject: Re: httpd patch B5 updated, 14 March 1995,
15:10 MST.
281Apache developer mailing list, Cliff Skolnick, Subject: Process (please read), 15 March 1995, 3:11
PST; and Subject: Patch file format, 15 March 1995, 3:40 PST.
282Apache developer mailing list, Rob Harthill, Subject: patch list vote, 15 March 1995, 13:21:24 MST.

Two Bits Christopher M. Kelty 172

http://www.hyperreal.com/httpd/patchgen/list.cgi
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

release: Apache 0.2 on 18 March.283 Without a voting system, the group of
contributors could have gone on applying patches individually, each in his own
context, fixing the problems that ailed each user, but ignoring those that were
irrelevant or unnecessary in that context. With a voting process, however, a
convergence on a tested and approved new-httpd could emerge. As the process
was refined, members sought a volunteer to take votes, to open and close the
voting once a week, and to build a new version of Apache when the voting was
done. (Andrew Wilson was the first volunteer, to which Cliff Skolnick replied, ”I
guess the first vote is [pg226] voting Andrew as the vote taker :-).”)284 The
patch-and-vote process that emerged in the early stages of Apache was not
entirely novel; many contributors noted that the FreeBSD project used a similar
process, and some suggested the need for a ”patch coordinator” and others
worried that ”using patches gets very ugly, very quickly.”285

The significance of the patch-and-vote system was that it clearly represented the 675

tension between the virtuosity of individual developers and a group process aimed
at creating and maintaining a common piece of software. It was a way of balancing
the ability of each separate individuals expertise against a common desire to ship
and promote a stable, bug-free, public-domain Web server. As Roy Fielding and
others would describe it in hindsight, this tension was part of Apaches
advantage.

Although the Apache Group makes decisions as a whole, all of the actual work 676

of the project is done by individuals. The group does not write code, design
solutions, document products, or provide support to our customers; individual
people do that. The group provides an environment for collaboration and an
excellent trial-by-fire for ideas and code, but the creative energy needed to
solve a particular problem, redesign a piece of the system, or fix a given bug is
almost always contributed by individual volunteers working on their own, for
their own purposes, and not at the behest of the group. Competitors
mistakenly assume Apache will be unable to take on new or unusual tasks
because of the perception that we act as a group rather than follow a single
leader. What they fail to see is that, by remaining open to new contributors,
the group has an unlimited supply of innovative ideas, and it is the individuals
who chose to pursue their own ideas who are the real driving force for
innovation.286

Although openness is widely touted as the key to the innovations of Apache, the 677

claim is somewhat disingenuous: patches are just that, patches. Any large-scale
changes to the code could not be accomplished by applying patches, especially if
each patch must be subjected to a relatively harsh vote to be included. The only
way to make sweeping changesespecially changes that require iteration and
testing to get rightis to engage in separate ”branches” of a project or to
differentiate between internal and external releasesin short, to fork the project
temporarily in hopes that it would soon rejoin its stable parent. Apache
encountered this problem very early on with the ”Shambhala” rewrite of httpd by

283Apache developer mailing list, Rob Harthill, Subject: apache-0.2 on hyperreal, 18 March 1995,
18:46 MST.
284Apache developer mailing list, Cliff Skolnick, Subject: Re: patch list vote, 21 March 1995, 2:47 PST.
285Apache developer mailing list, Paul Richards, Subject: Re: vote counting, 21 March 1995, 22:24
GMT.
286Roy T. Fielding, ”Shared Leadership in the Apache Project.”

Two Bits Christopher M. Kelty 173

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Robert Thau. [pg227]

Shambhala was never quite official: Thau called it his ”noodling” server, or a 678

”garage” project. It started as his attempt to rewrite httpd as a server which could
handle and process multiple requests at the same time. As an experiment, it was
entirely his own project, which he occasionally referred to on the new-httpd list:
”Still hacking Shambhala, and laying low until it works well enough to talk
about.”287 By mid-June of 1995, he had a working version that he announced,
quite modestly, to the list as ”a garage project to explore some possible new
directions I thought *might* be useful for the group to pursue.”288 Another list
member, Randy Terbush, tried it out and gave it rave reviews, and by the end of
June there were two users exclaiming its virtues. But since it hadnt ever really
been officially identified as a fork, or an alternate development pathway, this led
Rob Harthill to ask: ”So whats the situation regarding Shambhala and Apache, are
those of you who have switched to it giving up on Apache and this project? If so,
do you need a separate list to discuss Shambhala?”289

Harthill had assumed that the NCSA code-base was ”tried and tested” and that 679

Shambhala represented a split, a fork: ”The question is, should we all go in one
direction, continue as things stand or Shambahla [sic] goes off on its own?”290 His
query drew out the miscommunication in detail: that Thau had planned it as a
”drop-in” replacement for the NCSA httpd, and that his intentions were to make it
the core of the Apache server, if he could get it to work. Harthill, who had spent no
small amount of time working hard at patching the existing server code, was not
pleased, and made the core issues explicit.

Maybe it was rsts [Robert Thaus] choice of phrases, such as ”garage project” 680

and it having a different name, maybe I didnt read his mailings thoroughly
enough, maybe they werent explicit enough, whatever. . . . Its a shame that
nobody using Shambhala (who must have realized what was going on) didnt
raise these issues weeks ago. I can only presume that rst was too modest to
push Shambhala, or at least discussion of it, onto us more vigourously. I
remember saying words to the effect of ”this is what I plan to do, stop me if
you think this isnt a good idea.” Why the hell didnt anyone say something? . . .
[D]id others get the same impression about rsts work as I did? Come on
people, if you want to be part of this group, collaborate!291 [pg228]

Harthills injunction to collaborate seems surprising in the context of a mailing list 681

and project created to facilitate collaboration, but the injunction is specific:
collaborate by making plans and sharing goals. Implicit in his words is the tension
between a project with clear plans and goals, an overarching design to which
everyone contributes, as opposed to a group platform without clear goals that
provides individuals with a setting to try out alternatives. Implicit in his words is
the spectrum between debugging an existing piece of software with a stable
identity and rewriting the fundamental aspects of it to make it something new. The
meaning of collaboration bifurcates here: on the one hand, the privileging of the
autonomous work of individuals which is submitted to a group peer review and
287Apache developer mailing list, Robert S. Thau, Subject: Re: 0.7.2b, 7 June 1995, 17:27 EDT.
288Apache developer mailing list, Robert S. Thau, Subject: My Garage Project, 12 June 1995, 21:14
GMT.
289Apache developer mailing list, Rob Harthill, Subject: Re: Shambhala, 30 June 1995, 9:44 MDT.
290Apache developer mailing list, Rob Harthill, Subject: Re: Shambhala, 30 June 1995, 14:50 MDT.
291Apache developer mailing list, Rob Harthill, Subject: Re: Shambhala, 30 June 1995, 16:48 GMT.

Two Bits Christopher M. Kelty 174

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

then incorporated; on the other, the privileging of a set of shared goals to which
the actions and labor of individuals is subordinated.292

Indeed, the very design of Shambhala reflects the former approach of privileging 682

individual work: like UNIX and EMACS before it, Shambhala was designed as a
modular system, one that could ”make some of that process [the patch-and-vote
process] obsolete, by allowing stuff which is not universally applicable (e.g.,
database back-ends), controversial, or just half-baked, to be shipped anyway as
optional modules.”293 Such a design separates the core platform from the
individual experiments that are conducted on it, rather than creating a design that
is modular in the hierarchical sense of each contributor working on an assigned
section of a project. Undoubtedly, the core platform requires coordination, but
extensions and modifications can happen without needing to transform the whole
project.294 Shambhala represents a certain triumph of the ”shut up and show me
the code” aesthetic: Thaus ”modesty” is instead a recognition that he should be
quiet until it ”works well enough to talk about,” whereas Harthills response is
frustration that no one has talked about what Thau was planning to do before it
was even attempted. The consequence was that Harthills work seemed to be in
vain, replaced by the work of a more virtuosic hackers demonstration of a superior
direction.
In the case of Apache one can see how coordination in Free Software is not just an 683

afterthought or a necessary feature of distributed work, but is in fact at the core of
software production itself, governing the norms and forms of life that determine
what will count as good software, how it will progress with respect to a context and
[pg229] background, and how people will be expected to interact around the topic of
design decisions. The privileging of adaptability brings with it a choice in the mode
of collaboration: it resolves the tension between the agonistic competitive creation
of software, such as Robert Thaus creation of Shambhala, and the need for
collective coordination of complexity, such as Harthills plea for collaboration to
reduce duplicated or unnecessary work.

Check Out and Commit 684

The technical and social forms that Linux and Apache take are enabled by the 685

tools they build and use, from bug-tracking tools and mailing lists to the Web
servers and kernels themselves. One such tool plays a very special role in the
emergence of these organizations: Source Code Management systems (SCMs).
SCMs are tools for coordinating people and code; they allow multiple people in
dispersed locales to work simultaneously on the same object, the same source
code, without the need for a central coordinating overseer and without the risk of
stepping on each others toes. The history of SCMsespecially in the case of
Linuxalso illustrates the recursive-depth problem: namely, is Free Software still
free if it is created with non-free tools?
SCM tools, like the Concurrent Versioning System (cvs) and Subversion, have 686

292Gabriella Coleman captures this nicely in her discussion of the tension between the individual
virtuosity of the hacker and the corporate populism of groups like Apache or, in her example, the
Debian distribution of Linux. See Coleman, The Social Construction of Freedom.
293Apache developer mailing list, Robert S. Thau, Subject: Re: Shambhala, 1 July 1995, 14:42 EDT.
294A slightly different explanation of the role of modularity is discussed in Steven Weber, The
Success of Open Source, 173-75.

Two Bits Christopher M. Kelty 175

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

become extremely common tools for Free Software programmers; indeed, it is rare
to find a project, even a project conducted by only one individual, which does not
make use of these tools. Their basic function is to allow two or more programmers
to work on the same files at the same time and to provide feedback on where their
edits conflict. When the number of programmers grows large, an SCM can become
a tool for managing complexity. It keeps track of who has ”checked out” files; it
enables users to lock files if they want to ensure that no one else makes changes
at the same time; it can keep track of and display the conflicting changes made by
two users to the same file; it can be used to create ”internal” forks or ”branches”
that may be incompatible with each other, but still allows programmers to try out
new things and, if all goes well, merge the branches into the trunk later on. In
sophisticated forms it can be used to ”animate” successive changes to a piece of
code, in order to visualize its evolution. [pg230]

Beyond mere coordination functions, SCMs are also used as a form of distribution; 687

generally SCMs allow anyone to check out the code, but restrict those who can
check in or ”commit” the code. The result is that users can get instant access to
the most up-to-date version of a piece of software, and programmers can
differentiate between stable releases, which have few bugs, and ”unstable” or
experimental versions that are under construction and will need the help of users
willing to test and debug the latest versions. SCM tools automate certain aspects
of coordination, not only reducing the labor involved but opening up new
possibilities for coordination.
The genealogy of SCMs can be seen in the example of Ken Thompsons creation of 688

a diff tape, which he used to distribute changes that had been contributed to UNIX.
Where Thompson saw UNIX as a spectrum of changes and the legal department at
Bell Labs saw a series of versions, SCM tools combine these two approaches by
minutely managing the revisions, assigning each change (each diff) a new version
number, and storing the history of all of those changes so that software changes
might be precisely undone in order to discover which changes cause problems.
Written by Douglas McIlroy, ”diff” is itself a piece of software, one of the famed
small UNIX tools that do one thing well. The program diff compares two files, line
by line, and prints out the differences between them in a structured format
(showing a series of lines with codes that indicate changes, additions, or removals).
Given two versions of a text, one could run diff to find the differences and make
the appropriate changes to synchronize them, a task that is otherwise tedious and,
given the exactitude of source code, prone to human error. A useful side-effect of
diff (when combined with an editor like ed or EMACS) is that when someone makes
a set of changes to a file and runs diff on both the original and the changed file,
the output (i.e., the changes only) can be used to reconstruct the original file from
the changed file. Diff thus allows for a clever, space-saving way to save all the
changes ever made to a file, rather than retaining full copies of every new version,
one saves only the changes. Ergo, version control. diffand programs like itbecame
the basis for managing the complexity of large numbers of programmers working
on the same text at the same time.
One of the first attempts to formalize version control was Walter Tichys Revision 689

Control System (RCS), from 1985.295 RCS kept track of the changes to different
files using diff and allowed programmers [pg231] to see all of the changes that had

295Tichy, ”RCS.”

Two Bits Christopher M. Kelty 176

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

been made to that file. RCS, however, could not really tell the difference between
the work of one programmer and another. All changes were equal, in that sense,
and any questions that might arise about why a change was made could remain
unanswered.
In order to add sophistication to RCS, Dick Grune, at the Vrije Universiteit, 690

Amsterdam, began writing scripts that used RCS as a multi-user,
Internet-accessible version-control system, a system that eventually became the
Concurrent Versioning System. cvs allowed multiple users to check out a copy,
make changes, and then commit those changes, and it would check for and either
prevent or flag conflicting changes. Ultimately, cvs became most useful when
programmers could use it remotely to check out source code from anywhere on
the Internet. It allowed people to work at different speeds, different times, and in
different places, without needing a central person in charge of checking and
comparing the changes. cvs created a form of decentralized version control for
very-large-scale collaboration; developers could work offline on software, and
always on the most updated version, yet still be working on the same object.
Both the Apache project and the Linux kernel project use SCMs. In the case of 691

Apache the original patch-and-vote system quickly began to strain the patience,
time, and energy of participants as the number of contributors and patches began
to grow. From the very beginning of the project, the contributor Paul Richards had
urged the group to make use of cvs. He had extensive experience with the system
in the Free-BSD project and was convinced that it provided a superior alternative
to the patch-and-vote system. Few other contributors had much experience with it,
however, so it wasnt until over a year after Richards began his admonitions that
cvs was eventually adopted. However, cvs is not a simple replacement for a
patch-and-vote system; it necessitates a different kind of organization. Richards
recognized the trade-off. The patch-and-vote system created a very high level of
quality assurance and peer review of the patches that people submitted, while the
cvs system allowed individuals to make more changes that might not meet the
same level of quality assurance. The cvs system allowed branchesstable, testing,
experimentalwith different levels of quality assurance, while the patch-and-vote
system was inherently directed at one final and stable version. As the case of
Shambhala [pg232] exhibited, under the patch-and-vote system experimental
versions would remain unofficial garage projects, rather than serve as official
branches with people responsible for committing changes.
While SCMs are in general good for managing conflicting changes, they can do so 692

only up to a point. To allow anyone to commit a change, however, could result in a
chaotic mess, just as difficult to disentangle as it would be without an SCM. In
practice, therefore, most projects designate a handful of people as having the
right to ”commit” changes. The Apache project retained its voting scheme, for
instance, but it became a way of voting for ”committers” instead for patches
themselves. Trusted committersthose with the mysterious ”good taste,” or
technical intuitionbecame the core members of the group.
The Linux kernel has also struggled with various issues surrounding SCMs and the 693

management of responsibility they imply. The story of the so-called VGER tree and
the creation of a new SCM called Bitkeeper is exemplary in this respect.296 By

296See Steven Weber, The Success of Open Source, 117-19; Moody, Rebel Code, 172-78. See also
Shaikh and Cornford, ”Version Management Tools.”

Two Bits Christopher M. Kelty 177

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

1997, Linux developers had begun to use cvs to manage changes to the source
code, though not without resistance. Torvalds was still in charge of the changes to
the official stable tree, but as other ”lieutenants” came on board, the complexity
of the changes to the kernel grew. One such lieutenant was Dave Miller, who
maintained a ”mirror” of the stable Linux kernel tree, the VGER tree, on a server at
Rutgers. In September 1998 a fight broke out among Linux kernel developers over
two related issues: one, the fact that Torvalds was failing to incorporate (patch)
contributions that had been forwarded to him by various people, including his
lieutenants; and two, as a result, the VGER cvs repository was no longer in synch
with the stable tree maintained by Torvalds. Two different versions of Linux
threatened to emerge.
A great deal of yelling ensued, as nicely captured in Moodys Rebel Code, 694

culminating in the famous phrase, uttered by Larry McVoy: ”Linus does not scale.”
The meaning of this phrase is that the ability of Linux to grow into an ever larger
project with increasing complexity, one which can handle myriad uses and
functions (to ”scale” up), is constrained by the fact that there is only one Linus
Torvalds. By all accounts, Linus was and is excellent at what he doesbut there is
only one Linus. The danger of this situation is the danger of a fork. A fork would
mean one or more new versions would proliferate under new leadership, a
situation much like [pg233] the spread of UNIX. Both the licenses and the SCMs are
designed to facilitate this, but only as a last resort. Forking also implies dilution
and confusioncompeting versions of the same thing and potentially unmanageable
incompatibilities.
The fork never happened, however, but only because Linus went on vacation, 695

returning renewed and ready to continue and to be more responsive. But the crisis
had been real, and it drove developers into considering new modes of coordination.
Larry McVoy offered to create a new form of SCM, one that would allow a much
more flexible response to the problem that the VGER tree represented. However,
his proposed solution, called Bitkeeper, would create far more controversy than
the one that precipitated it.
McVoy was well-known in geek circles before Linux. In the late stages of the 696

open-systems era, as an employee of Sun, he had penned an important document
called ”The Sourceware Operating System Proposal.” It was an internal Sun
Microsystems document that argued for the company to make its version of UNIX
freely available. It was a last-ditch effort to save the dream of open systems. It
was also the first such proposition within a company to ”go open source,” much
like the documents that would urge Netscape to Open Source its software in 1998.
Despite this early commitment, McVoy chose not to create Bitkeeper as a Free
Software project, but to make it quasi-proprietary, a decision that raised a very
central question in ideological terms: can one, or should one, create Free Software
using non-free tools?
On one side of this controversy, naturally, was Richard Stallman and those sharing 697

his vision of Free Software. On the other were pragmatists like Torvalds claiming no
goals and no commitment to ”ideology”only a commitment to ”fun.” The tension
laid bare the way in which recursive publics negotiate and modulate the core
components of Free Software from within. Torvalds made a very strong and vocal
statement concerning this issue, responding to Stallmans criticisms about the use
of non-free software to create Free Software: ”Quite frankly, I dont _want_ people
using Linux for ideological reasons. I think ideology sucks. This world would be a

Two Bits Christopher M. Kelty 178

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

much better place if people had less ideology, and a whole lot more I do this
because its FUN and because others might find it useful, not because I got
religion.”297

Torvalds emphasizes pragmatism in terms of coordination: the right tool for the job 698

is the right tool for the job. In terms of licenses, [pg234] however, such pragmatism
does not play, and Torvalds has always been strongly committed to the GPL,
refusing to let non-GPL software into the kernel. This strategic pragmatism is in
fact a recognition of where experimental changes might be proposed, and where
practices are settled. The GPL was a stable document, sharing source code widely
was a stable practice, but coordinating a project using SCMs was, during this
period, still in flux, and thus Bitkeeper was a tool well worth using so long as it
remained suitable to Linux development. Torvalds was experimenting with the
meaning of coordination: could a non-free tool be used to create Free
Software?
McVoy, on the other hand, was on thin ice. He was experimenting with the 699

meaning of Free Software licenses. He created three separate licenses for
Bitkeeper in an attempt to play both sides: a commercial license for paying
customers, a license for people who sell Bitkeeper, and a license for ”free users.”
The free-user license allowed Linux developers to use the software for freethough
it required them to use the latest versionand prohibited them from working on a
competing project at the same time. McVoys attempt to have his cake and eat it,
too, created enormous tension in the developer community, a tension that built
from 2002, when Torvalds began using Bitkeeper in earnest, to 2005, when he
announced he would stop.
The tension came from two sources: the first was debates among developers 700

addressing the moral question of using non-free software to create Free Software.
The moral question, as ever, was also a technical one, as the second source of
tension, the license restrictions, would reveal.
The developer Andrew Trigdell, well known for his work on a project called Samba 701

and his reverse engineering of a Microsoft networking protocol, began a project to
reverse engineer Bitkeeper by looking at the metadata it produced in the course of
being used for the Linux project. By doing so, he crossed a line set up by McVoys
experimental licensing arrangement: the ”free as long as you dont copy me”
license. Lawyers advised Trigdell to stay silent on the topic while Torvalds publicly
berated him for ”willful destruction” and a moral lapse of character in trying to
reverse engineer Bitkeeper. Bruce Perens defended Trigdell and censured Torvalds
for his seemingly contradictory ethics.298 McVoy never sued Trigdell, and Bitkeeper
has limped along as a commercial project, because, [pg235] much like the EMACS
controversy of 1985, the Bitkeeper controversy of 2005 ended with Torvalds simply
deciding to create his own SCM, called git.
The story of the VGER tree and Bitkeeper illustrate common tensions within 702

recursive publics, specifically, the depth of the meaning of free. On the one hand,
there is Linux itself, an exemplary Free Software project made freely available; on
the other hand, however, there is the ability to contribute to this process, a
297Linus Torvalds, ”Re: [PATCH] Remove Bitkeeper Documentation from Linux Tree,” 20 April 2002,
⌜ http://www.uwsg.indiana.edu/hypermail/linux/kernel/0204.2/1018.html ⌟ . Quoted in Shaikh and Cornford,
”Version Management Tools.”
298Andrew Orlowski, ”Cool it, LinusBruce Perens,” Register, 15 April 2005,
⌜ http://www.theregister.co.uk/2005/04/15/perens_on_torvalds/page2.html ⌟ .

Two Bits Christopher M. Kelty 179

http://www.uwsg.indiana.edu/hypermail/linux/kernel/0204.2/1018.html
http://www.theregister.co.uk/2005/04/15/perens_on_torvalds/page2.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

process that is potentially constrained by the use of Bitkeeper. So long as the
function of Bitkeeper is completely circumscribedthat is, completely plannedthere
can be no problem. However, the moment one user sees a way to change or
improve the process, and not just the kernel itself, then the restrictions and
constraints of Bitkeeper can come into play. While it is not clear that Bitkeeper
actually prevented anything, it is also clear that developers clearly recognized it as
a potential drag on a generalized commitment to adaptability. Or to put it in terms
of recursive publics, only one layer is properly open, that of the kernel itself; the
layer beneath it, the process of its construction, is not free in the same sense. It is
ironic that Torvaldsotherwise the spokesperson for antiplanning and
adaptabilitywillingly adopted this form of constraint, but not at all surprising that it
was collectively rejected.
The Bitkeeper controversy can be understood as a kind of experiment, a 703

modulation on the one hand of the kinds of acceptable licenses (by McVoy) and on
the other of acceptable forms of coordination (Torvaldss decision to use Bitkeeper).
The experiment was a failure, but a productive one, as it identified one kind of
non-free software that is not safe to use in Free Software development: the SCM
that coordinates the people and the code they contribute. In terms of recursive
publics the experiment identified the proper depth of recursion. Although it might
be possible to create Free Software using some kinds of non-free tools, SCMs are
not among them; both the software created and the software used to create it
need to be free.299

The Bitkeeper controversy illustrates again that adaptability is not about radical 704

invention, but about critique and response. Whereas controlled design and
hierarchical planning represent the domain of governancecontrol through
goal-setting and orientation of a collective or a projectadaptability privileges
politics, properly speaking, the ability to critique existing design and to [pg236]

propose alternatives without restriction. The tension between goal-setting and
adaptability is also part of the dominant ideology of intellectual property.
According to this ideology, IP laws promote invention of new products and ideas,
but restrict the re-use or transformation of existing ones; defining where novelty
begins is a core test of the law. McVoy made this tension explicit in his
justifications for Bitkeeper: ”Richard [Stallman] might want to consider the fact
that developing new software is extremely expensive. Hes very proud of the
collection of free software, but thats a collection of re-implementations, but no
profoundly new ideas or products. . . . What if the free software model simply cant
support the costs of developing new ideas?”300

Novelty, both in the case of Linux and in intellectual property law more generally, 705

is directly related to the interplay of social and technical coordination: goal
direction vs. adaptability. The ideal of adaptability promoted by Torvalds suggests
a radical alternative to the dominant ideology of creation embedded in
contemporary intellectual-property systems. If Linux is ”new,” it is new through
299Similar debates have regularly appeared around the use of non-free compilers, non-free
debuggers, non-free development environments, and so forth. There are, however, a large number
of people who write and promote Free Software that runs on proprietary operating systems like
Macintosh and Windows, as well as a distinction between tools and formats. So, [pg341] for instance,
using Adobe Photoshop to create icons is fine so long as they are in standard open formats like PNG
or JPG, and not proprietary forms such as GIF or photoshop.
300Quoted in Jeremy Andrews, ”Interview: Larry McVoy,” Kernel Trap, 28 May 2002,
⌜ http://Kerneltrap.org/node/222 ⌟ .

Two Bits Christopher M. Kelty 180

http://Kerneltrap.org/node/222
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

adaptation and the coordination of large numbers of creative contributors who
challenge the ”design” of an operating system from the bottom up, not from the
top down. By contrast, McVoy represents a moral imagination of design in which it
is impossible to achieve novelty without extremely expensive investment in
top-down, goal-directed, unpolitical designand it is this activity that the
intellectual-property system is designed to reward. Both are engaged, however, in
an experiment; both are engaged in ”figuring out” what the limits of Free Software
are.

Coordination Is Design 706

Many popular accounts of Free Software skip quickly over the details of its 707

mechanism to suggest that it is somehow inevitable or obvious that Free Software
should worka self-organizing, emergent system that manages complexity through
distributed contributions by hundreds of thousands of people. In The Success of
Open Source Steven Weber points out that when people refer to Open Source as a
self-organizing system, they usually mean something more like ”I dont understand
how it works.”301 [pg237]

Eric Raymond, for instance, suggests that Free Software is essentially the 708

emergent, self-organizing result of ”collaborative debugging”: ”Given enough
eyeballs, all bugs are shallow.”302 The phrase implies that the core success of Free
Software is the distributed, isolated, labor of debugging, and that design and
planning happen elsewhere (when a developer ”scratches an itch” or responds to
a personal need). On the surface, such a distinction seems quite obvious:
designing is designing, and debugging is removing bugs from software, and
presto!Free Software. At the extreme end, it is an understanding by which only
individual geniuses are capable of planning and design, and if the initial conditions
are properly set, then collective wisdom will fill in the details.
However, the actual practice and meaning of collective or collaborative debugging 709

is incredibly elastic. Sometimes debugging means fixing an error; sometimes it
means making the software do something different or new. (A common joke, often
made at Microsofts expense, captures some of this elasticity: whenever something
doesnt seem to work right, one says, ”Thats a feature, not a bug.”) Some
programmers see a design decision as a stupid mistake and take action to correct
it, whereas others simply learn to use the software as designed. Debugging can
mean something as simple as reading someone elses code and helping them
understand why it does not work; it can mean finding bugs in someone elses
software; it can mean reliably reproducing bugs; it can mean pinpointing the cause
of the bug in the source code; it can mean changing the source to eliminate the
bug; or it can, at the limit, mean changing or even re-creating the software to
make it do something different or better.303 For academics, debugging can be a

301Steven Weber, The Success of Open Source, 132.
302Raymond, The Cathedral and the Bazaar.
303Gabriella Coleman, in ”The Social Construction of Freedom,” provides an excellent example of a
programmers frustration with font-lock in EMACS, something that falls in between a bug and a
feature. The programmers frustration is directed at the stupidity of the design (and implied
designers), but his solution is not a fix, but a work-aroundand it illustrates how debugging does not
always imply collaboration.

Two Bits Christopher M. Kelty 181

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

way to build a career: ”Find bug. Write paper. Fix bug. Write paper. Repeat.”304 For
commercial software vendors, by contrast, debugging is part of a battery of tests
intended to streamline a product.
Coordination in Free Software is about adaptability over planning. It is a way of 710

resolving the tension between individual virtuosity in creation and the social
benefit in shared labor. If all software were created, maintained, and distributed
only by individuals, coordination would be superfluous, and software would indeed
be part of the domain of poetry. But even the paradigmatic cases of virtuosic
creationEMACS by Richard Stallman, UNIX by Ken Thompson and Dennis
Ritchieclearly represent the need for creative forms [pg238] of coordination and the
fundamental practice of reusing, reworking, rewriting, and imitation. UNIX was not
created de novo, but was an attempt to streamline and rewrite Multics, itself a
system that evolved out of Project MAC and the early mists of time-sharing and
computer hacking.305 EMACS was a reworking of the TECO editor. Both examples
are useful for understanding the evolution of modes of coordination and the
spectrum of design and debugging.
UNIX was initially ported and shared through mixed academic and commercial 711

means, through the active participation of computer scientists who both received
updates and contributed fixes back to Thompson and Ritchie. No formal system
existed to manage this process. When Thompson speaks of his understanding of
UNIX as a ”spectrum” and not as a series of releases (V1, V2, etc.), the implication
is that work on UNIX was continuous, both within Bell Labs and among its
widespread users. Thompsons use of the diff tape encapsulates the core problem
of coordination: how to collect and redistribute the changes made to the system
by its users.
Similarly, Bill Joys distribution of BSD and James Goslings distribution of GOSMACS 712

were both ad hoc, noncorporate experiments in ”releasing early and often.” These
distribution schemes had a purpose (beyond satisfying demand for the software).
The frequent distribution of patches, fixes, and extensions eased the pain of
debugging software and satisfied users demands for new features and extensions
(by allowing them to do both themselves). Had Thompson and Ritchie followed the
conventional corporate model of software production, they would have been held
responsible for thoroughly debugging and testing the software they distributed,
and AT&T or Bell Labs would have been responsible for coming up with all
innovations and extensions as well, based on marketing and product research.
Such an approach would have sacrificed adaptability in favor of planning. But
Thompsons and Ritchies model was different: both the extension and the
debugging of software became shared responsibilities of the users and the
developers. Stallmans creation of EMACS followed a similar pattern; since EMACS
was by design extensible and intended to satisfy myriad unforeseen needs, the
responsibility rested on the users to address those needs, and sharing their
extensions and fixes had obvious social benefit.
The ability to see development of software as a spectrum implies more than just 713

continuous work on a product; it means seeing the [pg239] product itself as
something fluid, built out of previous ideas and products and transforming,
differentiating into new ones. Debugging, from this perspective, is not separate

304Dan Wallach, interview, 3 October 2003.
305Mitchell Waldrops The Dream Machine details the family history well.

Two Bits Christopher M. Kelty 182

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

from design. Both are part of a spectrum of changes and improvements whose
goals and direction are governed by the users and developers themselves, and the
patterns of coordination they adopt. It is in the space between debugging and
design that Free Software finds its niche.

Conclusion: Experiments and Modulations 714

Coordination is a key component of Free Software, and is frequently identified as 715

the central component. Free Software is the result of a complicated story of
experimentation and construction, and the forms that coordination takes in Free
Software are specific outcomes of this longer story. Apache and Linux are both
experimentsnot scientific experiments per se but collective social experiments in
which there are complex technologies and legal tools, systems of coordination and
governance, and moral and technical orders already present.
Free Software is an experimental system, a practice that changes with the results 716

of new experiments. The privileging of adaptability makes it a peculiar kind of
experiment, however, one not directed by goals, plans, or hierarchical control, but
more like what John Dewey suggested throughout his work: the experimental
praxis of science extended to the social organization of governance in the service
of improving the conditions of freedom. What gives this experimentation
significance is the centrality of Free Softwareand specifically of Linux and
Apacheto the experimental expansion of the Internet. As an infrastructure or a
milieu, the Internet is changing the conditions of social organization, changing the
relationship of knowledge to power, and changing the orientation of collective life
toward governance. Free Software is, arguably, the best example of an attempt to
make this transformation public, to ensure that it uses the advantages of
adaptability as critique to counter the power of planning as control. Free Software,
as a recursive public, proceeds by proposing and providing alternatives. It is a bit
like Kants version of enlightenment: insofar as geeks speak (or hack) as scholars,
in a public realm, they have a right to propose criticisms and changes of any sort;
as soon as they relinquish [pg240] that commitment, they become private employees
or servants of the sovereign, bound by conscience and power to carry out the
duties of their given office. The constitution of a public realm is not a universal
activity, however, but a historically specific one: Free Software confronts the
specific contemporary technical and legal infrastructure by which it is possible to
propose criticisms and offer alternatives. What results is a recursive public filled
not only with individuals who govern their own actions but also with code and
concepts and licenses and forms of coordination that turn these actions into viable,
concrete technical forms of life useful to inhabitants of the present.

Two Bits Christopher M. Kelty 183

https://twobits.net
https://kelty.org/

Part III modulations 717

The question cannot be answered by argument. Experimental method means 718

experiment, and the question can be answered only by trying, by organized
effort. The reasons for making the trial are not abstract or recondite. They are
found in the confusion, uncertainty and conflict that mark the modern world. . .
. The task is to go on, and not backward, until the method of intelligence and
experimental control is the rule in social relations and social direction. - john
dewey, Liberalism and Social Action

Two Bits Christopher M. Kelty 184

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

8.”If We Succeed, We Will Disappear” 719

In early 2002, after years of reading and learning about Open Source and Free 720

Software, I finally had a chance to have dinner with famed libertarian, gun-toting,
Open Source-founding impresario Eric Raymond, author of The Cathedral and the
Bazaar and other amateur anthropological musings on the subject of Free
Software. He had come to Houston, to Rice University, to give a talk at the behest
of the Computer and Information Technology Institute (CITI). Visions of a mortal
confrontation between two anthropologists-manqué filled my head. I imagined
explaining point by point why his references to self-organization and evolutionary
psychology were misguided, and how the long tradition of economic anthropology
contradicted basically everything he had to say about gift-exchange. Alas, two
things conspired against this epic, if bathetic, showdown.
First, there was the fact that (as so often happens in meetings among geeks) there 721

was only one woman present at dinner; she was [pg244] young, perhaps unmarried,
but not a studentan interested female hacker. Raymond seated himself beside this
woman, turned toward her, and with a few one-minute-long exceptions proceeded
to lavish her with all of his available attention. The second reason was that I was
seated next to Richard Baraniuk and Brent Hendricks. All at once, Raymond looked
like the past of Free Software, arguing the same arguments, using the same
rhetoric of his online publications, while Baraniuk and Hendricks looked like its
future, posing questions about the transformationthe modulationof Free Software
into something surprising and new.
Baraniuk, a professor of electrical engineering and a specialist in digital signal 722

processing, and Hendricks, an accomplished programmer, had started a project
called Connexions, an ”open content repository of educational materials.” Far
more interesting to me than Raymonds amateur philosophizing was this extant
project to extend the ideas of Free Software to the creation of educational
materialstextbooks, in particular.
Rich and Brent were, by the looks of it, equally excited to be seated next to me, 723

perhaps because I was answering their questions, whereas Raymond was not, or
perhaps because I was a new hire at Rice University, which meant we could talk
seriously about collaboration. Rich and Brent (and Jan Odegard, who, as director of
CITI, had organized the dinner) were keen to know what I could add to help them
understand the ”social” aspects of what they wanted to do with Connexions, and I,
in return, was equally eager to learn how they conceptualized their Free
Software-like project: what had they kept the same and what had they changed in
their own experiment? Whatever they meant by ”social” (and sometimes it meant
ethical, sometimes legal, sometimes cultural, and so on), they were clear that
there were domains of expertise in which they felt comfortable (programming,
project management, teaching, and a particular kind of research in computer
science and electrical engineering) and domains in which they did not (the
”norms” of academic life outside their disciplines, intellectual-property law,
”culture”). Although I tried to explain the nature of my own expertise in social
theory, philosophy, history, and ethnographic research, the academic distinctions
were far less important than the fact that I could ask detailed and pointed
questions about the project, questions that indicated to them that I must have
some kind of stake in the domains that they needed filledin particular, [pg245]

around the question of whether Connexions was the same thing as Free Software,

Two Bits Christopher M. Kelty 185

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

and what the implications of that might be.
Raymond courted and chattered on, then left, the event of his talk and dinner of 724

fading significance, but over the following weeks, as I caught up with Brent and
Rich, I became (surprisingly quickly) part of their novel experiment.

After Free Software 725

My nonmeeting with Raymond is an allegory of sorts: an allegory of what comes 726

after Free Software. The excitement around that table was not so much about Free
Software or Open Source, but about a certain possibility, a kind of genotypic urge
of which Free Software seemed a fossil phenotype and Connexions a live one. Rich
and Brent were people in the midst of figuring something out. They were engaged
in modulating the practices of Free Software. By modulation I mean exploring in
detail the concrete practicesthe howof Free Software in order to ask what can be
changed, and what cannot, in order to maintain something (openness?) that no
one can quite put his finger on. What drew me immediately to Connexions was
that it was related to Free Software, not metaphorically or ideologically, but
concretely, practically, and experimentally, a relationship that was more about
emergence out of than it was about the reproduction of forms. But the opposition
between emergence and reproduction immediately poses a question, not unlike
that of the identity of species in evolution: if Free Software is no longer software,
what exactly is it?
In part III I confront this question directly. Indeed, it was this question that 727

necessitated part II, the analytic decomposition of the practices and histories of
Free Software. In order to answer the question ”Is Connexions Free Software?” (or
vice versa) it was necessary to rethink Free Software as itself a collective,
technical experiment, rather than as an expression of any ideology or culture. To
answer yes, or no, however, merely begs the question ”What is Free Software?”
What is the cultural significance of these practices? The concept of a recursive
public is meant to reveal in part the significance of both Free Software and
emergent projects like Connexions; it is meant to help chart when these emergent
projects branch off absolutely (cease to be public) and when they do not, by [pg246]

focusing on how they modulate the five components that give Free Software its
contemporary identity.
Connexions modulates all of the components except that of the movement (there 728

is, as of yet, no real ”Free Textbook” movement, but the ”Open Access” movement
is a close second cousin).306 Perhaps the most complex modulation concerns

306In January 2005, when I first wrote this analysis, this was true. By April 2006, the Hewlett
Foundation had convened the Open Educational Resources ”movement” as something that would
transform the production and circulation of textbooks like those created by Connexions. Indeed, in
Rich Baraniuks report for Hewlett, the first paragraph reads: ”A grassroots movement is on the verge
of sweeping through the academic world. The open education movement is based on a set of
intuitions that are shared by a remarkably wide range of academics: that knowledge should be free
and open to use and re-use; that collaboration should be easier, not harder; that people should
receive credit and kudos for contributing to education and research; and that concepts and ideas are
linked in unusual and surprising ways and not the simple linear forms that textbooks present. Open
education promises to fundamentally change the way authors, instructors, and students interact
worldwide” (Baraniuk and King, ”Connexions”). (In a nice confirmation of just how embedded
participation can become in anthropology, Baraniuk cribbed the second sentence from something I
had written two years earlier as part of a description of what I thought Connexions hoped to

Two Bits Christopher M. Kelty 186

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

coordinationchanges to the practice of coordination and collaboration in
academic-textbook creation in particular, and more generally to the nature of
collaboration and coordination of knowledge in science and scholarship
generally.
Connexions emerged out of Free Software, and not, as one might expect, out of 729

education, textbook writing, distance education, or any of those areas that are
topically connected to pedagogy. That is to say, the people involved did not come
to their project by attempting to deal with a problem salient to education and
teaching as much as they did so through the problems raised by Free Software and
the question of how those problems apply to university textbooks. Similarly, a
second project, Creative Commons, also emerged out of a direct engagement with
and exploration of Free Software, and not out of any legal movement or scholarly
commitment to the critique of intellectual-property law or, more important, out of
any desire to transform the entertainment industry. Both projects are resolutely
committed to experimenting with the given practices of Free Softwareto testing
their limits and changing them where they canand this is what makes them
vibrant, risky, and potentially illuminating as cases of a recursive public.
While both initiatives are concerned with conventional subject areas (educational 730

materials and cultural productions), they enter the fray orthogonally, armed with
anxiety about the social and moral order in which they live, and an urge to
transform it by modulating Free Software. This binds such projects across
substantive domains, in that they are forced to be oppositional, not because they
want to be (the movement comes last), but because they enter the domains of
education and the culture industry as outsiders. They are in many ways intuitively
troubled by the existing state of affairs, and their organizations, tools, legal
licenses, and movements are seen as alternative imaginations of social order,
especially concerning creative freedom and the continued existence of a commons
of scholarly knowledge. To the extent that these projects [pg247] remain in an
orthogonal relationship, they are making a recursive public appearsomething the
textbook industry and the entertainment industry are, by contrast, not at all
interested in doing, for obvious financial and political reasons.

Stories of Connexion 731

Im at dinner again. This time, a windowless hotel conference room in the 732

basement maybe, or perhaps high up in the air. Lawyers, academics, activists,
policy experts, and foundation people are semi-excitedly working their way
through the hotels steam-table fare. Im trying to tell a story to the assembled
groupa story that I have heard Rich Baraniuk tell a hundred timesbut Im screwing
it up. Rich always gets enthusiastic stares of wonder, light-bulbs going off
everywhere, a subvocalized ”Aha!” or a vigorous nod. I, on the other hand, am
clearly making it too complicated. Faces and foreheads are squirmed up into lines
of failed comprehension, people stare at the gravy-sodden food theyre soldiering
through, weighing the option of taking another bite against listening to me
complicate an already complicated world. I wouldnt be doing this, except that Rich
is on a plane, or in a taxi, delayed by snow or engineers or perhaps at an

achieve.) The ”movement” as such still does not quite exist, but the momentum for it is clearly part
of the actions that Hewlett hopes to achieve.

Two Bits Christopher M. Kelty 187

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

eponymous hotel in another city. Meanwhile, our co-organizer Laurie Racine, has
somehow convinced herself that I have the childlike enthusiasm necessary to
channel Rich. Im flattered, but unconvinced. After about twenty minutes, so is she,
and as I try to answer a question, she stops me and interjects, ”Rich really needs
to be here. He should really be telling this story.”
Miraculously, he shows up and, before he can even say hello, is conscripted into 733

telling his story properly. I sigh in relief and pray that Ive not done any irreparable
damage and that I can go back to my role as straight man. I can let the
superaltern speak for himself. The downside of participant observation is being
asked to participate in what one had hoped first of all to observe. I do know the
storyI have heard it a hundred times. But somehow what I hear, ears tuned to
academic questions and marveling at some of the stranger claims he makes,
somehow this is not the ear for enlightenment that his practiced and boyish charm
delivers to those hearing it for the first time; it is instead an ear tuned to questions
[pg248] of why: why this project? Why now? And even, somewhat convolutedly, why
are people so fascinated when he tells the story? How could I tell it like Rich?
Rich is an engineer, in particular, a specialist in Digital Signal Processing (DSP). 734

DSP is the science of signals. It is in everything, says Rich: your cell phones, your
cars, your CD players, all those devices. It is a mathematical discipline, but it is
also an intensely practical one, and its connected to all kinds of neighboring fields
of knowledge. It is the kind of discipline that can connect calculus, bioinformatics,
physics, and music. The statistical and analytical techniques come from all sorts of
research and end up in all kinds of interesting devices. So Rich often finds himself
trying to teach students to make these kinds of connectionsto understand that a
Fourier transform is not just another chapter in calculus but a tool for manipulating
signals, whether in bioinformatics or in music.
Around 1998 or 1999, Rich decided that it was time for him to write a textbook on 735

DSP, and he went to the dean of engineering, Sidney Burris, to tell him about the
idea. Burris, who is also a DSP man and longtime member of the Rice University
community, said something like, ”Rich, why dont you do something useful?” By
which he meant: there are a hundred DSP textbooks out there, so why do you want
to write the hundred and first? Burris encouraged Rich to do something bigger,
something ambitious enough to put Rice on the map. I mention this because it is
important to note that even a university like Rice, with a faculty and graduate
students on par with the major engineering universities of the country, perceives
that it gets no respect. Burris was, and remains, an inveterate supporter of
Connexions, precisely because it might put Rice ”in the history books” for having
invented something truly novel.
At about the same time as his idea for a textbook, Richs research group was 736

switching over to Linux, and Rich was first learning about Open Source and the
emergence of a fully free operating system created entirely by volunteers. It isnt
clear what Richs aha! moment was, other than simply when he came to an
understanding that such a thing as Linux was actually possible. Nonetheless, at
some point, Rich had the idea that his textbook could be an Open Source textbook,
that is, a textbook created not just by him, but by DSP researchers all over the
world, and made available to everyone to make use of and modify and improve as
they saw fit, just like Linux. Together with Brent Hendricks, Yan David Erlich, [pg249]

and Ross Reedstrom, all of whom, as geeks, had a deep familiarity with the history
and practices of Free and Open Source Software, Rich started to conceptualize a

Two Bits Christopher M. Kelty 188

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

system; they started to think about modulations of different components of Free
and Open Source Software. The idea of a Free Software textbook repository slowly
took shape.
Thus, Connexions: an ”open content repository of high-quality educational 737

materials.” These ”textbooks” very quickly evolved into something else:
”modules” of content, something that has never been sharply defined, but which
corresponds more or less to a small chunk of teachable information, like two or
three pages in a textbook. Such modules are much easier to conceive of in
sciences like mathematics or biology, in which textbooks are often multiauthored
collections, finely divided into short chapters with diagrams, exercises, theorems,
or programs. Modules lend themselves much less well to a model of humanities or
social-science scholarship based in reading texts, discussion, critique, and
comparisonand this bias is a clear reflection of what Brent, Ross, and Rich knew
best in terms of teaching and writing. Indeed, the projects frequent recourse to the
image of an assembly-line model of knowledge production often confirms the
worst fears of humanists and educators when they first encounter Connexions.
The image suggests that knowledge comes in prepackaged and colorfully branded
tidbits for the delectation of undergrads, rather than characterizing knowledge as
a state of being or as a process.
The factory image (figure 7) is a bit misleading. Richs and Brents imaginations are 738

in fact much broader, which shows whenever they demo the project, or give a talk,
or chat at a party about it. Part of my failure to communicate excitement when I
tell the story of Connexions is that I skip the examples, which is where Rich starts:
what if, he says, you are a student taking Calculus 101 and, at the same time,
Intro to Signals and Systemsno one is going to explain to you how Fourier
transforms form a bridge, or connection, between them. ”Our brains arent
organized in linear, chapter-by-chapter ways,” Rich always says, ”so why are our
textbooks?” How can we give students a way to see the connection between
statistics and genetics, between architecture and biology, between
intellectual-property law and chemical engineering? Rich is always looking for new
examples: a music class for kids that uses information from physics, or vice versa,
for instance. Richs great hope is that the [pg250] [pg251] more modules there are in the
Connexions commons, the more fantastic and fascinating might be the
possibilities for such noveland naturalconnections.
2bits_08_07-100.png,w530h827 [* The Connexions textbook as a factory. 739

Illustration by Jenn Drummond, Ross Reedstrom, Max Starkenberg, and others,
1999-2004. Used with permission.]
Free Softwareand, in particular, Open Source in the guise of ”self-organizing” 740

distributed systems of coordinationprovide a particular promise of meeting the
challenges of teaching and learning that Rich thinks we face. Richs commitment is
not to a certain kind of pedagogical practice, but to the ”social” or ”community”
benefits of thousands of people working ”together” on a textbook. Indeed,
Connexions did not emerge out of education or educational technology; it was not
aligned with any particular theory of learning (though Rich eventually developed a
rhetoric of linked, networked, connected knowledgehence the name
Connexionsthat he uses often to sell the project). There is no school of education
at Rice, nor a particular constituency for such a project (teacher-training programs,
say, or administrative requirements for online education). What makes Richs sell
even harder is that the project emerged at about the same time as the high-profile

Two Bits Christopher M. Kelty 189

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

failure of dotcom bubble-fueled schemes to expand university education into
online education, distance education, and other systems of expanding the paying
student body without actually inviting them onto campus. The largest of these
failed experiments by far was the project at Columbia, which had reached the
stage of implementation at the time the bubble burst in 2000.307

Thus, Rich styled Connexions as more than just a factory of knowledgeit would be 741

a community or culture developing richly associative and novel kinds of
textbooksand as much more than just distance education. Indeed, Connexions was
not the only such project busy differentiating itself from the perceived dangers of
distance education. In April 2001 MIT had announced that it would make the
content of all of its courses available for free online in a project strategically called
OpenCourseWare (OCW). Such news could only bring attention to MIT, which
explicitly positioned the announcement as a kind of final death blow to the idea of
distance education, by saying that what students pay $35,000 and up for per year
is not ”knowledge”which is freebut the experience of being at MIT. The
announcement created pure profit from the perspective of MITs reputation as a
generator and disseminator of scientific knowledge, but the project did not emerge
directly out of an interest in mimicking the success of Open Source. That angle
was [pg252] provided ultimately by the computer-science professor Hal Abelson,
whose deep understanding of the history and growth of Free Software came from
his direct involvement in it as a long-standing member of the computer-science
community at MIT. OCW emerged most proximately from the strange result of a
committee report, commissioned by the provost, on how MIT should position itself
in the ”distance/e-learning” field. The surprising response: dont do it, give the
content away and add value to the campus teaching and research experience
instead.308

OCW, Connexions, and distance learning, therefore, while all ostensibly interested 742

in combining education with the networks and software, emerged out of different
demands and different places. While the profit-driven demand of distance learning
fueled many attempts around the country, it stalled in the case of OCW, largely
because the final MIT Council on Educational Technology report that recommended
OCW was issued at the same time as the first plunge in the stock market (April
2000). Such issues were not a core factor in the development of Connexions, which
is not to say that the problems of funding and sustainability have not always been
important concerns, only that genesis of the project was not at the administrative
level or due to concerns about distance education. For Rich, Brent, and Ross the
core commitment was to openness and to the success of Open Source as an
experiment with massive, distributed, Internet-based, collaborative production of
softwaretheir commitment to this has been, from the beginning, completely and
adamantly unwavering. Neverthless, the project has involved modulations of the
core features of Free Software. Such modulations depend, to a certain extent, on
being a project that emerges out of the ideas and practices of Free Software,
rather than, as in the case of OCW, one founded as a result of conflicting goals
(profit and academic freedom) and resulting in a strategic use of public relations to

307See Chris Beam, ”Fathom.com Shuts Down as Columbia Withdraws,” Columbia Spectator, 27
January 2003, ⌜ http://www.columbiaspectator.com/ ⌟ . Also see David Nobles widely read critique, ”Digital
Diploma Mills.”
308”Provost Announces Formation of Council on Educational Technology,” MIT Tech Talk, 29
September 1999, ⌜ http://web.mit.edu/newsoffice/1999/council-0929.html ⌟ .

Two Bits Christopher M. Kelty 190

http://www.columbiaspectator.com/
http://web.mit.edu/newsoffice/1999/council-0929.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

increase the symbolic power of the university over its fiscal growth.
When Rich recounts the story of Connexions, though, he doesnt mention any of 743

this background. Instead, like a good storyteller, he waits for the questions to pose
themselves and lets his demonstration answer them. Usually someone asks, ”How
is Connexions different from OCW?” And, every time, Rich says something similar:
Connexions is about ”communities,” about changing the way scholars collaborate
and create knowledge, whereas OCW is simply [pg253] an attempt to transfer
existing courses to a Web format in order to make the content of those courses
widely available. Connexions is a radical experiment in the collaborative creation
of educational materials, one that builds on the insights of Open Source and that
actually encompasses the OCW project. In retrospective terms, it is clear that OCW
was interested only in modulating the meaning of source code and the legal
license, whereas Connexions seeks also to modulate the practice of coordination,
with respect to academic textbooks.
Richs story of the origin of Connexions usually segues into a demonstration of the 744

system, in which he outlines the various technical, legal, and educational concepts
that distinguish it. Connexions uses a standardized document format, the
eXtensible Mark-up Language (XML), and a Creative Commons copyright license
on every module; the Creative Commons license allows people not only to copy
and distribute the information but to modify it and even to use it for commercial
gain (an issue that causes repeated discussion among the team members). The
material ranges from detailed explanations of DSP concepts (naturally) to K-12
music education (the most popular set of modules). Some contributors have
added entire courses; others have created a few modules here and there.
Contributors can set up workgroups to manage the creation of modules, and they
can invite other users to join. Connexions uses a version-control system so that all
of the changes are recorded; thus, if a module used in one class is changed, the
person using it for another class can continue to use the older version if they wish.
The number of detailed and clever solutions embodied in the system never ceases
to thoroughly impress anyone who takes the time to look at it.
But what always animates people is the idea of random and flexible connection, 745

the idea that a textbook author might be able to build on the work of hundreds of
others who have already contributed, to create new classes, new modules, and
creative connections between them, or surprising juxtapositionsfrom the biologist
teaching a class on bioinformatics who needs to remind students of certain parts
of calculus without requiring a whole course; to the architect who wants a studio to
study biological form, not necessarily in order to do experiments in biology, but to
understand buildings differently; to the music teacher who wants students to
understand just enough physics to get the concepts of pitch and [pg254] timbre; to or
the physicist who needs a concrete example for the explanation of waves and
oscillation.
The idea of such radical recombinations is shocking for some (more often for 746

humanities and social-science scholars, rather than scientists or engineers, for
reasons that clearly have to do with an ideology of authentic and individualized
creative ability). The questions that resultregarding copyright, plagiarism, control,
unauthorized use, misuse, misconstrual, misreading, defamation, and so
ongenerally emerge with surprising force and speed. If Rich were trying to sell a
version of ”distance learning,” skepticism and suspicion would quickly overwhelm
the project; but as it is, Connexions inverts almost all of the expectations people

Two Bits Christopher M. Kelty 191

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

have developed about textbooks, classroom practice, collaboration, and copyright.
More often than not people leave the discussion convertedno doubt helped along
by Richs storytelling gift.

Modulations: From Free Software to Connexions 747

Connexions surprises people for some of the same reasons as Free Software 748

surprises people, emerging, as it does, directly out of the same practices and the
same components. Free Software provides a template made up of the five
components: shared source code, a concept of openness, copyleft licenses, forms
of coordination, and a movement or ideology. Connexions starts with the idea of
modulating a shared ”source code,” one that is not software, but educational
textbook modules that academics will share, port, and fork. The experiment that
results has implications for the other four components as well. The implications
lead to new questions, new constraints, and new ideas.
The modulation of source code introduces a specific and potentially confusing 749

difference from Free Software projects: Connexions is both a conventional Free
Software project and an unconventional experiment based on Free Software. There
is, of course, plenty of normal source code, that is, a number of software
components that need to be combined in order to allow the creation of digital
documents (the modules) and to display, store, transmit, archive, and measure the
creation of modules. The creation and management of this software is expected to
function more or less like all Free Software projects: it is licensed using Free
Software licenses, it is [pg255] built on open standards of various kinds, and it is set
up to take contributions from other users and developers. The software system for
managing modules is itself built on a variety of other Free Software components
(and a commitment to using only Free Software). Connexions has created various
components, which are either released like conventional Free Software or
contributed to another Free Software project. The economy of contribution and
release is a complex one; issues of support and maintenance, as well as of
reputation and recognition, figure into each decision. Others are invited to
contribute, just as they are invited to contribute to any Free Software
project.309

At the same time, there is ”content,” the ubiquitous term for digital creations that 750

are not software. The creation of content modules, on the other hand (which the
software system makes technically possible), is intended to function like a Free
Software project, in which, for instance, a group of engineering professors might
get together to collaborate on pieces of a textbook on DSP. The Connexions project
does not encompass or initiate such collaborations, but, rather, proceeds from the
assumption that such activity is already happening and that Connexions can
provide a kind of alternative platforman alternative infrastructure evenwhich
textbook-writing academics can make use of instead of the current infrastructure
of publishing. The current infrastructure and technical model of textbook writing,
this implies, is one that both prevents people from taking advantage of the Open
Source model of collaborative development and makes academic work ”non-free.”
The shared objects of content are not source code that can be compiled, like
309The software consists of a collection of different Open Source Software cobbled together to
provide the basic platform (the Zope and Plone content-management frameworks, the PostGresQL
database, the python programming language, and the cvs version-control software).

Two Bits Christopher M. Kelty 192

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

source code in C, but documents marked up with XML and filled with ”educational”
content, then ”displayed” either on paper or onscreen.
The modulated meaning of source code creates all kinds of new 751

questionsspecifically with respect to the other four components. In terms of
openness, for instance, Connexions modulates this component very little; most of
the actors involved are devoted to the ideals of open systems and open standards,
insofar as it is a Free Software project of a conventional type. It builds on UNIX
(Linux) and the Internet, and the project leaders maintain a nearly fanatical
devotion to openness at every level: applications, programming languages,
standards, protocols, mark-up languages, interface tools. Every place where there
is an open (as opposed to a [pg256] proprietary) solutionthat choice trumps all others
(with one noteworthy exception).310 James Boyle recently stated it well:
”Wherever possible, design the system to run with open content, on open
protocols, to be potentially available to the largest possible number of users, and
to accept the widest possible range of experimental modifications from users who
can themselves determine the development of the technology.”311

With respect to content, the devotion to openness is nearly identical, because 752

conventional textbook publishers ”lock in” customers (students) through the
creation of new editions and useless ”enhanced” content, which jacks up prices
and makes it difficult for educators to customize their own courses. ”Openness” in
this sense trades on the same reasoning as it did in the 1980s: the most important
aspect of the project is the information people create, and any proprietary system
locks up content and prevents people from taking it elsewhere or using it in a
different context.
Indeed, so firm is the commitment to openness that Rich and Brent often say 753

something like, ”If we are successful, we will disappear.” They do not want to
become a famous online textbook publisher; they want to become a famous
publishing infrastructure. Being radically open means that any other competitor
can use your systembut it means they are using your system, and this is the goal.
Being open means not only sharing the ”source code” (content and modules), but
devising ways to ensure the perpetual openness of that content, that is, to create
a recursive public devoted to the maintenance and modifiability of the medium or
infrastructure by which it communicates. Openness trumps ”sustainability” (i.e.,
the self-perpetuation of the financial feasibility of a particular organization), and
where it fails to, the commitment to openness has been compromised.
The commitment to openness and the modulation of the meaning of source code 754

thus create implications for the meaning of Free Software licenses: do such
licenses cover this kind of content? Are new licenses necessary? What should they
look like? Connexions was by no means the first project to stimulate questions
about the applicability of Free Software licenses to texts and documents. In the
310The most significant exception has been the issue of tools for authoring content in XML. For most
of the life of the Connexions project, the XML mark-up language has been well-defined and clear, but
there has been no way to write a module in XML, short of directly writing the text and the tags in a
text editor. For all but a very small number of possible users, this feels too much like programming,
and they experience it as too frustrating to be worth it. The solution (albeit temporary) was to
encourage users to make use of a proprietary XML editor (like a word processor, but capable of
creating XML content). Indeed, the Connexions projects devotion to openness was tested by one of
the most important decisions its participants made: to pursue the creation of an Open Source XML
text editor in order to provide access to completely open tools for creating completely open content.
311Boyle, ”Mertonianism Unbound,” 14.

Two Bits Christopher M. Kelty 193

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

case of EMACS and the GPL, for example, Richard Stallman had faced the problem
of licensing the manual at the same time as the source code for the editor. Indeed,
such issues would ultimately result in a GNU Free Documentation License intended
narrowly to [pg257] cover software manuals. Stallman, due to his concern, had
clashed during the 1990s with Tim OReilly, publisher and head of OReilly Press,
which had long produced books and manuals for Free Software programs. OReilly
argued that the principles reflected in Free Software licenses should not be applied
to instructional books, because such books provided a service, a way for more
people to learn how to use Free Software, and in turn created a larger audience.
Stallman argued the opposite: manuals, just like the software they served, needed
to be freely modifiable to remain useful.
By the late 1990s, after Free Software and Open Source had been splashed across 755

the headlines of the mainstream media, a number of attempts to create licenses
modeled on Free Software, but applicable to other things, were under way. One of
the earliest and most general was the Open Content License, written by the
educational-technology researcher David Wiley. Wileys license was intended for
use on any kind of content. Content could include text, digital photos, movies,
music, and so on. Such a license raises new issues. For example, can one
designate some parts of a text as ”invariant” in order to prevent them from being
changed, while allowing other parts of the text to be changed (the model
eventually adopted by the GNU Free Documentation License)? What might the
relationship between the ”original” and the modified version be? Can one expect
the original author to simply incorporate suggested changes? What kinds of
forking are possible? Where do the ”moral rights” of an author come into play
(regarding the ”integrity” of a work)?
At the same time, the modulation of source code to include academic textbooks 756

has extremely complex implications for the meaning and context of coordination:
scholars do not write textbooks like programmers write code, so should they
coordinate in the same ways? Coordination of a textbook or a course in
Connexions requires novel experiments in textbook writing. Does it lend itself to
academic styles of work, and in which disciplines, for what kinds of projects? In
order to cash in on the promise of distributed, collaborative creation, it would be
necessary to find ways to coordinate scholars.
So, when Rich and Brent recognized in me, at dinner, someone who might know 757

how to think about these issues, they were acknowledging that the experiment
they had started had created a certain turbulence in their understanding of Free
Software and, [pg258] in turn, a need to examine the kinds of legal, cultural, and
social practices that would be at stake.312

Modulations: From Connexions to Creative Commons 758

Im standing in a parking lot in 100 degree heat and 90 percent humidity. It is 759

312The movement is the component that remains unmodulated: there is no ”free textbook”
movement associated with Connexions, even though many of the same arguments that lead to a
split between Free Software and Open Source occur here: the question of whether the term free is
confusing, for example, or the role of for-profit publishers or textbook companies. In the end, most
(though not all) of the Connexions staff and many of its users are content to treat it as a useful tool
for composing novel kinds of digital educational materialnot as a movement for the liberation of
educational content.

Two Bits Christopher M. Kelty 194

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

spring in Houston. I am looking for my car, and I cannot find it. James Boyle,
author of Shamans, Software, and Spleens and distinguished professor of law at
Duke University, is standing near me, staring at me, wearing a wool suit, sweating
and watching me search for my car under the blazing sun. His look says simply, ”If
I dont disembowel you with my Palm Pilot stylus, I am going to relish telling this
humiliating story to your friends at every opportunity I can.” Boyle is a patient
man, with the kind of arch Scottish humor that can make you feel like his best
friend, even as his stories of the folly of man unfold with perfect comic pitch and
turn out to be about you. Having laughed my way through many an uproarious
tale of the foibles of my fellow creatures, I am aware that I have just taken a seat
among them in Boyles theater of human weakness. I repeatedly press the panic
button on my key chain, in the hopes that I am near enough to my car that it will
erupt in a frenzy of honking and flashing that will end the humiliation.
The day had started well. Boyle had folded himself into my Volkswagen (he is tall), 760

and we had driven to campus, parked the car in what no doubt felt like a
memorable space at 9 A.M., and happily gone to the scheduled meetingonly to
find that it had been mistakenly scheduled for the following day. Not my fault,
though now, certainly, my problem. The ostensible purpose of Boyles visit was to
meet the Connexions team and learn about what they were doing. Boyle had
proposed the visit himself, as he was planning to pass through Houston anyway. I
had intended to pester him with questions about the politics and possibilities of
licensing the content in Connexions and with comparisons to MITs OCW and other
such commons projects that Boyle knew of.
Instead of attending the meeting, I took him back to my office, where I learned 761

more about why he was interested in Connexions. Boyles interest was not entirely
altruistic (nor was it designed to spend valuable quarter hours standing in a
scorched parking lot as I looked for my subcompact car). What interested Boyle
was finding [pg259] a constituency of potential users for Creative Commons, the
nonprofit organization he was establishing with Larry Lessig, Hal Abelson, Michael
Carroll, Eric Eldred, and otherslargely because he recognized the need for a ready
constituency in order to make Creative Commons work. The constituency was
needed both to give the project legitimacy and to allow its founders to understand
what exactly was needed, legally speaking, for the creation of a whole new set of
Free Software-like licenses.
Creative Commons, as an organization and as a movement, had been building for 762

several years. In some ways, Creative Commons represented a simple modulation
of the Free Software license: a broadening of the licenses concept to cover other
types of content. But the impetus behind it was not simply a desire to copy and
extend Free Software. Rather, all of the people involved in Creative Commons
were those who had been troubling issues of intellectual property, information
technology, and notions of commons, public domains, and freedom of information
for many years. Boyle had made his name with a book on the construction of the
information society by its legal (especially intellectual property) structures. Eldred
was a publisher of public-domain works and the lead plaintiff in a court case that
went to the Supreme Court in 2002 to determine whether the recent extension of
copyright term limits was constitutional. Abelson was a computer scientist with an
active interest in issues of privacy, freedom, and law ”on the electronic frontier.”
And Larry Lessig was originally interested in constitutional law, a clerk for Judge
Richard Posner, and a self-styled cyberlaw scholar, who was, during the 1990s, a

Two Bits Christopher M. Kelty 195

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

driving force for the explosion of interest in cyberlaw, much of it carried out at the
Berkman Center for Internet and Society at Harvard University.
With the exception of Abelsonwho, in addition to being a famous computer 763

scientist, worked for years in the same building that Richard Stallman camped out
in and chaired the committee that wrote the report recommending OCWnone of
the members of Creative Commons cut their teeth on Free Software projects (they
were lawyers and activists, primarily) and yet the emergence of Open Source into
the public limelight in 1998 was an event that made more or less instant and
intuitive sense to all of them. During this time, Lessig and members of the
Berkman Center began an ”open law” project designed to mimic the
Internet-based collaboration of the Open Source project among lawyers who might
want to [pg260] contribute to the Eldred case. Creative Commons was thus built as
much on a commitment to a notion of collaborative creationthe use of the Internet
especiallybut more generally on the ability of individuals to work together to
create new things, and especially to coordinate the creation of these things by the
use of novel licensing agreements.
Creative Commons provided more than licenses, though. It was part of a social 764

imaginary of a moral and technical order that extended beyond software to include
creation of all kinds; notions of technical and moral freedom to make use of ones
own ”culture” became more and more prominent as Larry Lessig became more
and more involved in struggles with the entertainment industry over the ”control
of culture.” But for Lessig, Creative Commons was a fall-back option; the direct
route to a transformation of the legal structure of intellectual property was through
the Eldred case, a case that built huge momentum throughout 2001 and 2002,
was granted cert by the Supreme Court, and was heard in October of 2002. One of
the things that made the case remarkable was the series of strange bedfellows it
produced; among the economists and lawyers supporting the repeal of the 1998
”Sonny Bono” Copyright Term Extension Act were the arch free-marketeers and
Nobel Prize winners Milton Friedman, James Buchanan, Kenneth Arrow, Ronald
Coase, and George Akerlof. As Boyle pointed out in print, conservatives and
liberals and libertarians all have reasons to be in favor of scaling back copyright
expansion.313 Lessig and his team lost the case, and the Supreme Court
essentially affirmed Congresss interpretation of the Constitution that ”for limited
times” meant only that the time period be limited, not that it be short.
Creative Commons was thus a back-door approach: if the laws could not be 765

changed, then people should be given the tools they needed to work around those
laws. Understanding how Creative Commons was conceived requires seeing it as a
modulation of both the notion of ”source code” and the modulation of ”copyright
licenses.” But the modulations take place in that context of a changing legal
system that was so unfamiliar to Stallman and his EMACS users, a legal system
responding to new forms of software, networks, and devices. For instance, the
changes to the Copyright Act of 1976 created an unintended effect that Creative
Commons would ultimately seize on. By eliminating the requirement to register
copyrighted works (essentially granting copyright as soon as the [pg261] work is
”fixed in a tangible medium”), the copyright law created a situation wherein there
was no explicit way in which a work could be intentionally placed in the public
domain. Practically speaking an author could declare that a work was in the public

313Boyle, ”Conservatives and Intellectual Property.”

Two Bits Christopher M. Kelty 196

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

domain, but legally speaking the risk would be borne entirely by the person who
sought to make use of that work: to copy it, transform it, sell it, and so on. With
the explosion of interest in the Internet, the problem ramified exponentially; it
became impossible to know whether someone who had placed a text, an image, a
song, or a video online intended for others to make use of iteven if the author
explicitly declared it ”in the public domain.” Creative Commons licenses were thus
conceived and rhetorically positioned as tools for making explicit exactly what
uses could be made of a specific work. They protected the rights of people who
sought to make use of ”culture” (i.e., materials and ideas and works they had not
authored), an approach that Lessig often summed up by saying, ”Culture always
builds on the past.”
The background to and context of the emergence of Creative Commons was of 766

course much more complicated and fraught. Concerns ranged from the plights of
university libraries with regard to high-priced journals, to the problem of
documentary filmmakers unable to afford, or even find the owners of, rights to use
images or snippets in films, to the high-profile fights over online music trading,
Napster, and the RIAA. Over the course of four years, Lessig and the other
founders of Creative Commons would address all of these issues in books, in
countless talks and presentations and conferences around the world, online and
off, among audiences ranging from software developers to entrepreneurs to
musicians to bloggers to scientists.
Often, the argument for Creative Commons draws heavily on the concept of 767

culture besieged by the content industries. A story which Lessig enjoys tellingone
that I heard on several occasions when I saw him speak at conferenceswas that of
Mickey Mouse. An interesting, quasi-conspiratorial feature of the twentieth-century
expansion of intellectual-property law is that term limits seem to have been
extended right around the time Mickey Mouse was about to become public
property. True or not, the point Lessig likes to make is that the Mouse is not the de
novo creation of the mind of Walt Disney that intellectual-property law likes to
pretend it is, but built on the past of culture, in particular, on Steamboat Willie,
[pg262] Charlie Chaplin, Krazy Kat, and other such characters, some as inspiration,
some as explicit material. The greatness in Disneys creation comes not from the
mind of Disney, but from the culture from which it emerged. Lessig will often
illustrate this in videos and images interspersed with
black-typewriter-font-bestrewn slides and a machine-gun style that makes you
think hes either a beat-poet manqué or running for office, or maybe both.
Other examples of intellectual-property issues fill the books and talks of Creative 768

Commons advocates, stories of blocked innovation, stifled creativity, andthe
scariest point of all (at least for economist-lawyers)inefficiency due to
over-expansive intellectual-property laws and overzealous corporate
lawyer-hordes.314 Lessig often preaches to the converted (at venues like South by
Southwest Interactive and the OReilly Open Source conferences), and the
audiences are always outraged at the state of affairs and eager to learn what they
can do. Often, getting involved in the Creative Commons is the answer. Indeed,
within a couple of years, Creative Commons quickly became more of a movement
(a modulation of the Free/Open Source movement) than an experiment in writing
314Lessigs output has been prodigious. His books include Code and Other Laws of Cyber Space, The
Future of Ideas, Free Culture, and Code: Version 2.0. He has also written a large number of articles
and is an active blogger (⌜ http://www.lessig.org/blog/ ⌟).

Two Bits Christopher M. Kelty 197

http://www.lessig.org/blog/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

licenses.
On that hot May day in 2002, however, Creative Commons was still under 769

development. Later in the day, Boyle did get a chance to meet with the
Connexions project team members. The Connexions team had already realized
that in pursuing an experimental project in which Free Software was used as a
template they created a need for new kinds of licenses. They had already
approached the Rice University legal counsel, who, though well-meaning, were not
grounded at all in a deep understanding of Free Software and were thus naturally
suspicious of it. Boyles presence and his detailed questions about the project were
like a revelationa revelation that there were already people out there thinking
about the very problem the Connexions team faced and that the team would not
need to solve the problem themselves or make the Rice University legal counsel
write new open-content licenses. What Boyle offered was the possibility for
Connexions, as well as for myself as intermediary, to be involved in the detailed
planning and license writing that was under way at Creative Commons. At the
same time, it gave Creative Commons an extremely willing ”early-adopter” for the
license, and one from an important corner of the world: scholarly research and
teaching.315 My task, after recovering from the [pg263] shame of being unable to find
my car, was to organize a workshop in August at which members of Creative
Commons, Connexions, MITs OCW, and any other such projects would be invited to
talk about license issues.

Participant Figuring Out 770

The workshop I organized in August 2002 was intended to allow Creative 771

Commons, Connexions, and MITs OCW project to try to articulate what each might
want from the other. It was clear what Creative Commons wanted: to convince as
many people as possible to use their licenses. But what Connexions and OCW
might have wanted, from each other as well as from Creative Commons, was less
clear. Given the different goals and trajectories of the two projects, their needs for
the licenses differed in substantial waysenough so that the very idea of using the
same license was, at least temporarily, rendered impossible by MIT. While OCW
was primarily concerned about obtaining permissions to place existing copyrighted
work on the Web, Connexions was more concerned about ensuring that new work
remain available and modifiable.
In retrospect, this workshop clarified the novel questions and problems that 772

emerged from the process of modulating the components of Free Software for
different domains, different kinds of content, and different practices of
collaboration and sharing. Since then, my own involvement in this activity has
been aimed at resolving some of these issues in accordance with an imagination of
openness, an imagination of social order, that I had learned from my long
experience with geeks, and not from my putative expertise as an anthropologist or
a science-studies scholar. The fiction that I had at first adoptedthat I was bringing
scholarly knowledge to the tablebecame harder and harder to maintain the more I

315There were few such projects under way, though there were many in the planning stages. Within
a year, the Public Library of Science had launched itself, spearheaded by Harold Varmus, the former
director of the National Institutes of Health. At the time, however, the only other large scholarly
project was the MIT Open Course Ware project, which, although it had already agreed to use Creative
Commons licenses, had demanded a peculiar one-off license.

Two Bits Christopher M. Kelty 198

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

realized that it was my understanding of Free Software, gained through ongoing
years of ethnographic apprenticeship, that was driving my involvement.
Indeed, the research I describe here was just barely undertaken as a research 773

project. I could not have conceived of it as a fundable activity in advance of
discovering it; I could not have imagined the course of events in any of the
necessary detail to write a proper proposal for research. Instead, it was an
outgrowth of thinking and [pg264] participating that was already under way,
participation that was driven largely by intuition and a feeling for the problem
represented by Free Software. I wanted to help figure something out. I wanted to
see how ”figuring out” happens. While I could have organized a fundable research
project in which I picked a mature Free Software project, articulated a number of
questions, and spent time answering them among this group, such a project would
not have answered the questions I was trying to form at the time: what is
happening to Free Software as it spreads beyond the world of hackers and
software? How is it being modulated? What kinds of limits are breached when
software is no longer the central component? What other domains of thought and
practice were or are ”readied” to receive and understand Free Software and its
implications?316

My experiencemy participant-observationwith Creative Commons was therefore 774

primarily done as an intermediary between the Connexions project (and, by
implication, similar projects under way elsewhere) and Creative Commons with
respect to the writing of licenses. In many ways this detailed, specific practice was
the most challenging and illuminating aspect of my participation, but in retrospect
it was something of a red herring. It was not only the modulation of the meaning of
source code and of legal licenses that differentiated these projects, but, more
important, the meaning of collaboration, reuse, coordination, and the cultural
practice of sharing and building on knowledge that posed the trickiest of the
problems.
My contact at Creative Commons was not James Boyle or Larry Lessig, but Glenn 775

Otis Brown, the executive director of that organization (as of summer 2002). I first
met Glenn over the phone, as I tried to explain to him what Connexions was about
and why he should join us in Houston in August to discuss licensing issues related
to scholarly material. Convincing him to come to Texas was an easier sell than
explaining Connexions (given my penchant for complicating it unnecessarily), as
Glenn was an Austin native who had been educated at the University of Texas
before heading off to Harvard Law School and its corrupting influence at the hands
of Lessig, Charlie Nesson, and John Perry Barlow.
316The fact that I organized a workshop to which I invited ”informants” and to which I subsequently
refer as research might strike some, both in anthropology and outside it, as wrong. But it is precisely
the kind of occasion I would argue has become central to the problematics of method in cultural
anthropology today. On this subject, see Holmes and Marcus, ”Cultures of Expertise and the
Management of Globalization.” Such strategic and seemingly ad hoc participation does not exclude
one from attempting to later disentangle oneself from such participation, in order to comment on the
value and significance, and especially to offer critique. Such is the attempt to achieve objectivity in
social science, an objectivity that goes beyond the basic notions of bias and observer-effect so
common in the social sciences. ”Objectivity” in a broader social sense includes the observation of
the conceptual linkages that both precede such a workshop (constituted the need for it to happen)
and follow on it, independent of any particular meeting. The complexity of mobilizing objectivity in
discussions of the value and significance of social or economic phenomena was well articulated a
century ago by Max Weber, and problems of method in the sense raised by him seem to me to be no
less fraught today. See Max Weber, ”Objectivity in the Social Sciences.”

Two Bits Christopher M. Kelty 199

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Glenn galvanized the project. With his background as a lawyer, and especially his 776

keen interest in intellectual-property law, and his long-standing love of music of all
kinds Glenn lent incredible enthusiasm to his work. Prior to joining Creative
Commons, he had [pg265] clerked for the Hon. Stanley Marcus on the Eleventh
Circuit Court of Appeals, in Miami, where he worked on the so-called Wind Done
Gone case.317 His participation in the workshop was an experiment of his own; he
was working on a story that he would tell countless times and which would
become one of the core examples of the kind of practice Creative Commons
wanted to encourage.
A New York Times story describes how the band the White Stripes had allowed 777

Steven McDonald, the bassist from Redd Kross, to lay a bass track onto the songs
that made up the album White Blood Cells. In a line that would eventually become
a kind of mantra for Creative Commons, the article stated: ”Mr. McDonald began
putting these copyrighted songs online without permission from the White Stripes
or their record label; during the project, he bumped into Jack White, who gave him
spoken assent to continue. It can be that easy when you skip the
intermediaries.”318 The ease with which these two rockers could collaborate to
create a modified work (called, of course, Redd Blood Cells) without entering a
studio, or, more salient, a law firm, was emblematic of the notion that ”culture
builds on the past” and that it need not be difficult to do so.
Glenn told the story with obvious and animated enthusiasm, ending with the 778

assertion that the White Stripes didnt have to give up all their rights to do this, but
they didnt have to keep them all either; instead of ”All Rights Reserved,” he
suggested, they could say ”Some Rights Reserved.” The story not only manages
to capture the message and aims of Creative Commons, but is also a nice
indication of the kind of dual role that Glenn played, first as a lawyer, and second
as a kind of marketing genius and message man. The possibility of there being
more than a handful of people like Glenn around was not lost on anyone, and his
ability to switch between the language of law and that of nonprofit populist
marketing was phenomenal.319

At the workshop, participants had a chance to hash out a number of different 779

issues related to the creation of licenses that would be appropriate to scholarly
content: questions of attribution and commercial use, modification and warranty;
differences between federal copyright law concerning licenses and state law
concerning commercial contracts. The starting point for most people was Free
Software, but this was not the only starting point. There were at least two other
broad threads that fed into the discussion and into the general understanding of
the state of affairs facing projects like [pg266] Connexions or OCW. The first thread
was that of digital libraries, hypertext, human-computer interaction research, and
educational technology. These disciplines and projects often make common
reference to two pioneers, Douglas Englebart and Theodore Nelson, and more
proximately to things like Apples HyperCard program and a variety of experiments

317Suntrust v. Houghton Mifflin Co., U.S. Eleventh Circuit Court of Appeals, 2001, 252 F. 3d 1165.
318Neil Strauss, ”An Uninvited Bassist Takes to the Internet,” New York Times, 25 August 2002, sec. 2,
23.
319Indeed, in a more self-reflective moment, Glenn once excitedly wrote to me to explain that what
he was doing was ”code-switching” and that he thought that geeks who constantly involved
themselves in technology, law, music, gaming, and so on would be prime case studies for a
code-switching study by anthropologists.

Two Bits Christopher M. Kelty 200

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

in personal academic computing. The debates and history that lead up to the
possibility of Connexions are complex and detailed, but they generally lack
attention to legal detail. With the exception of a handful of people in library and
information science who have made ”digital” copyright into a subspecialty, few
such projects, over the last twenty-five years, have made the effort to understand,
much less incorporate, issues of intellectual property into their purview.
The other thread combines a number of more scholarly interests that come out of 780

the disciplines of economics and legal theory: institutional economics, critical legal
realism, law and economicsthese are the scholastic designations. Boyle and
Lessig, for example, are both academics; Boyle does not practice law, and Lessig
has tried few cases. Nonetheless, they are both inheritors of a legal and
philosophical pragmatism in which value is measured by the transformation of
policy and politics, not by the mere extension or specification of conceptual issues.
Although both have penned a large number of complicated theoretical articles
(and Boyle is well known in several academic fields for his book Shamans,
Software, and Spleens and his work on authorship and the law), neither, I suspect,
would ever sacrifice the chance to make a set of concrete changes in legal or
political practice given the choice. This point was driven home for me in a
conversation I had with Boyle and others at dinner on the night of the launch of
Creative Commons, in December 2002. During that conversation, Boyle said
something to the effect of, ”We actually made something; we didnt just sit around
writing articles and talking about the dangers that face uswe made something.”
He was referring as much to the organization as to the legal licenses they had
created, and in this sense Boyle qualifies very much as a polymathic geek whose
understanding of technology is that it is an intervention into an already constituted
state of affairs, one that demonstrates its value by being created and installed, not
by being assessed in the court of scholarly opinions. [pg267]

Similarly, Lessigs approach to writing and speaking is unabashedly aimed at 781

transforming the way people approach intellectual-property law and, even more
generally, the way they understand the relationship between their rights and their
culture.320 Lessigs approach, at a scholarly level, is steeped in the teachings of law
and economics (although, as he has playfully pointed out, a ”second” Chicago
school) but is focused more on the understanding and manipulation of norms and
customs (”culture”) than on law narrowly conceived.321

Informing both thinkers is a somewhat heterodox economic consensus drawn 782

primarily from institutional economics, which is routinely used to make policy
arguments about the efficacy or efficiency of the intellectual-property system.
Both are also informed by an emerging consensus on treating the public domain in
the same manner in which environmentalists treated the environment in the
1960s.322 These approaches begin with long-standing academic and policy
concerns about the status and nature of ”public goods,” not directly with the
problem of Free Software or the Internet. In some ways, the concern with public

320See Kelty, ”Punt to Culture.”
321Lessig, ”The New Chicago School.”
322Hence, Boyles ”Second Enclosure Movement” and ”copyright conservancy” concepts (see Boyle,
”The Second Enclosure Movement”; Bollier, Silent Theft). Perhaps the most sophisticated and
compelling expression of the institutional-economics approach to understanding Free Software is the
work of Yochai Benkler, especially ”Sharing Nicely” and ”Coases Penguin.” See also Benkler, Wealth
of Networks.

Two Bits Christopher M. Kelty 201

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

goods, commons, the public domain, and collective action are part of the same
”reorientation of power and knowledge” I identify throughout Two Bits: namely, the
legitimation of the media of knowledge creation, communication, and circulation.
Most scholars of institutional economics and public policy are, however, just as
surprised and bewildered by the fact of Free Software as the rest of the world has
been, and they have sought to square the existing understanding of public goods
and collective action with this new phenomenon.323

All of these threads form the weft of the experiment to modulate the components 783

of Free Software to create different licenses that cover a broader range of objects
and that deal with people and organizations that are not software developers.
Rather than attempt to carry on arguments at the level of theory, however, my
aim in participating was to see how and what was argued in practice by the people
constructing these experiments, to observe what constraints, arguments,
surprises, or bafflements emerged in the course of thinking through the creation of
both new licenses and a new form of authorship of scholarly material. Like those
who study ”science in action” or the distinction between ”law on the books” and
”law in action,” I sought to observe the realities of a practice [pg268] heavily
determined by textual and epistemological frameworks of various sorts.324

In my years with Connexions I eventually came to see it as something in between 784

a natural experiment and a thought experiment: it was conducted in the open, and
it invited participation from working scholars and teachers (a natural experiment,
in that it was not a closed, scholarly endeavor aimed at establishing specific
results, but an essentially unbounded, functioning system that people could and
would come to depend on), and yet it proceeded by making a series of strategic
guesses (a thought experiment) about three related things: (1) what it is (and will
be) possible to do technically; (2) what it is (and will be) possible to do legally; and
(3) what scholars and educators have done and now do in the normal course of
their activities.
At the same time, this experiment gave shape to certain legal questions that I 785

channeled in the direction of Creative Commons, issues that ranged from technical
questions about the structure of digital documents, requirements of attribution,
and URLs to questions about moral rights, rights of disavowal, and the meaning of
”modification.” The story of the interplay between Connexions and Creative
Commons was, for me, a lesson in a particular mode of legal thinking which has
been described in more scholarly terms as the difference between the Roman or,
more proximately, the Napoleonic tradition of legal rationalism and the
Anglo-American common-law tradition.325 It was a practical experience of what
exactly the difference is between legal code and software code, with respect to
how those two things can be made flexible or responsive.

323Steven Webers The Success of Open Source is exemplary.
324Carrington and King, ”Law and the Wisconsin Idea.”
325In particular, Glenn Brown suggested Oliver Wendell Holmes as a kind of origin point both for
critical legal realism and for law and economics, a kind of filter through which lawyers get both their
Nietzsche [pg344] and their liberalism (see Oliver Wendell Holmes, ”The Path of the Law”). Glenns
opinion was that what he called ”punting to culture” (by which he meant writing minimalist laws
which allow social custom to fill in the details) descended more or less directly from the kind of legal
reasoning embodied in Holmes: ”Note that [Holmes] is probably best known in legal circles for
arguing that questions of morality be removed from legal analysis and left to the field of ethics. this
is what makes him the godfather of both the posners of the world, and the crits, and the strange
hybrids like lessig” (Glenn Brown, personal communication, 11 August 2003).

Two Bits Christopher M. Kelty 202

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

9.Reuse, Modification, and the Nonexistence of Norms 786

The Connexions project was an experiment in modulating the practices of Free 787

Software. It was not inspired by so much as it was based on a kind of template
drawn from the experience of people who had some experience with Free
Software, including myself. But how exactly do such templates get used? What is
traced and what is changed? In terms of the cultural significance of Free Software,
what are the implications of these changes? Do they maintain the orientation of a
recursive public, or are they attempts to apply Free Software for other private
concerns? And if they are successful, what are the implications for the domains
they affect: education, scholarship, scientific knowledge, and cultural production?
What effects do these changes have on the norms of work and the meaning and
shape of knowledge in these domains? [pg270]

In this chapter I explore in ethnographic detail how the modulations of Free 788

Software undertaken by Connexions and Creative Commons are related to the
problems of reuse, modification, and the norms of scholarly production. I present
these two projects as responses to the contemporary reorientation of knowledge
and power; they are recursive publics just as Free Software is, but they expand the
domain of practice in new directions, that is, into the scholarly world of textbooks
and research and into the legal domains of cultural production more
generally.
In the course of ”figuring out” what they are doing, these two projects encounter a 789

surprising phenomenon: the changing meaning of the finality of a scholarly or
creative work. Finality is not certainty. While certainty is a problematic that is well
and often studied in the philosophy of science and in science studies, finality is
less so. What makes a work stay a work? What makes a fact stay a fact? How does
something, certain or not, achieve stability and identity? Such finality, the very
paradigm of which is the published book, implies stability. But Connexions and
Creative Commons, through their experiments with Free Software, confront the
problem of how to stabilize a work in an unstable context: that of shareable source
code, an open Internet, copyleft licenses, and new forms of coordination and
collaboration.326 The meaning of finality will have important effects on the ability
to constitute a politics around any given work, whether a work of art or a work of
scholarship and science. The actors in Creative Commons and Connexions realize
this, and they therefore form yet another instance of a recursive public, precisely
because they seek ways to define the meaning of finality publicly and openlyand
to make modifiability an irreversible aspect of the process of stabilizing
knowledge.
The modulations of Free Software performed by Connexions and Creative 790

Commons reveal two significant issues. The first is the troublesome matter of the
meaning of reuse, as in the reuse of concepts, ideas, writings, articles, papers,
books, and so on for the creation of new objects of knowledge. Just as software
source code can be shared, ported, and forked to create new versions with new

326Actor-network theory comes closest to dealing with such ”ontological” issues as, for example,
airplanes in John Laws Aircraft Stories, the disease atheroscleroris in Annemarie Mols The Body
Multiple, or in vitro fertilization in Charis Thompsons Making Parents. The focus here on finality is
closely related, but aims at revealing the temporal characteristics of highly modifiable kinds of
knowledge-objects, like textbooks or databases, as in Geoffrey Bowkers Memory Practices in the
Sciences.

Two Bits Christopher M. Kelty 203

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

functions, and just as software and people can be coordinated in new ways using
the Internet, so too can scholarly and scientific content. I explore the implications
of this comparison in this chapter. The central gambit of both Connexions and
Creative Commons (and much of scientific practice generally) is that new work
builds on [pg271] previous work. In the sciences the notion that science is cumulative
is not at issue, but exactly how scientific knowledge accumulates is far from clear.
Even if ”standing on the shoulders of giants” can be revealed to hide
machinations, secret dealings, and Machiavellian maneuvering of the most craven
sort, the very concept of cumulative knowledge is sound. Building a fact, a result,
a machine, or a theory out of other, previous worksthis kind of reuse as progress is
not in question. But the actual material practice of writing, publication, and the
reuse of other results and works is something that, until very recently, has been
hidden from view, or has been so naturalized that the norms of practice are nearly
invisible to practitioners themselves.
This raises the other central concern of this chapter: that of the existence or 791

nonexistence of norms. For an anthropologist to query whether or not norms exist
might seem to theorize oneself out of a job; one definition of anthropology is, after
all, the making explicit of cultural norms. But the turn to ”practices” in
anthropology and science studies has in part been a turn away from ”norms” in
their classic sociological and specifically Mertonian fashion. Robert Mertons
suggestion that science has been governed by normsdisinterestedness,
communalism, organized skepticism, objectivityhas been repeatedly and roundly
criticized by a generation of scholars in the sociology of scientific knowledge who
note that even if such norms are asserted by actors, they are often subverted in
the doing.327 But a striking thing has happened recently; those Mertonian norms of
science have in fact become the more or less explicit goals in practice of scientists,
engineers, and geeks in the wake of Free Software. If Mertonian norms do not
exist, then they are being invented. This, of course, raises novel questions: can
one create norms? What exactly would this mean? How are norms different from
culture or from legal and technical constraints? Both Connexions and Creative
Commons explicitly pose this question and search for ways to identify, change, or
work with norms as they understand them, in the context of reuse.

Whiteboards: What Was Publication? 792

More than once, I have found myself in a room with Rich Baraniuk and Brent 793

Hendricks and any number of other employees of the [pg272] Connexions project,
staring at a whiteboard on which a number of issues and notes have been
scrawled. Usually, the notes have a kind of palimpsestic quality, on account of the
array of previous conversations that are already there, rewritten in tiny precise
script in a corner, or just barely erased beneath our discussion. These
conversations are often precipitated by a series of questions that Brent, Ross
Reedstrom, and the development team have encountered as they build and refine
the system. They are never simple questions. A visitor staring at the whiteboard
might catch a glimpse of the peculiar madness that afflicts the project: a mixture
of legal terms, technical terms, and terms like scholarly culture or DSP
communities. Im consulted whenever this mixture of terms starts to worry the

327Merton, ”The Normative Structure of Science.”

Two Bits Christopher M. Kelty 204

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

developers in terms of legality, culture, or the relationship between the two. Im
generally put in the position of speaking either as a lawyer (which, legally
speaking, I am not supposed to do) or as an anthropologist (which I do mainly by
virtue of holding a position in an anthropology department). Rarely are the things I
say met with assent: Brent and Ross, like most hackers, are insanely well versed in
the details of intellectual-property law, and they routinely correct me when I make
bold but not-quite-true assertions about it. Nonetheless, they rarely feel well
versed enough to make decisions about legal issues on their own, and often I have
been calledon again as a thoughtful sounding board, and off again as intermediary
with Creative Commons.
This process, I have come to realize, is about figuring something out. It is not just 794

a question of solving technical problems to which I might have some specific
domain knowledge. Figuring out is modulation; it is template-work. When Free
Software functions as a template for projects like Connexions, it does so literally,
by allowing us to trace a known form of practice (Free Software) onto a less well
known, seemingly chaotic background and to see where the forms match up and
where they do not. One very good way to understand what this means in a
particular casethat is, to see more clearly the modulations that Connexions has
performedis to consider the practice and institution of scholarly publication
through the template of Free Software.
Consider the ways scholars have understood the meaning and significance of print 795

and publication in the past, prior to the Internet and the contemporary
reorientation of knowledge and power. The list of ambitious historians and
theorists of the relationship [pg273] of media to knowledge is long: Lucien Febvre,
Walter Ong, Marshall McLuhan, Jack Goody, Roger Chartier, Friedrich Kittler,
Elizabeth Eisenstein, Adrian Johns, to name a few.328 With the exception of Johns,
however, the history of publication does not start with the conventional, legal, and
formal practices of publication so much as it does with the material practices and
structure of the media themselves, which is to say the mechanics and technology
of the printed book.329 Ongs theories of literacy and orality, Kittlers re-theorization
of the structure of media evolution, Goodys anthropology of the media of
accounting and writingall are focused on the tangible media as the dependent
variable of change. By contrast, Johnss The Nature of the Book uncovers the
contours of the massive endeavor involved in making the book a reliable and
robust form for the circulation of knowledge in the seventeenth century and
after.
Prior to Johnss work, arguments about the relationship of print and power fell 796

primarily into two camps: one could overestimate the role of print and the printing
press by suggesting that the ”fixity” of a text and the creation of multiple copies
led automatically to the spread of ideas and the rise of enlightenment. Alternately,
one could underestimate the role of the book by suggesting that it was merely a
328See Johns, The Nature of the Book; Eisenstein, The Printing Press as an Agent of Change; McLuhan,
The Gutenberg Galaxy and Understanding Media; Febvre and Martin, The Coming of the Book; Ong,
Ramus, Method, and the Decay of Dialogue; Chartier, The Cultural Uses of Print in Early Modern
France and The Order of Books; Kittler, Discourse Networks 1800/1900 and Gramophone, Film,
Typewriter.
329There is less communication between the theorists and historians of copyright and authorship and
those of the book; the former are also rich in analyses, such as Jaszi and Woodmansee, The
Construction of Authorship; Mark Rose, Authors and Owners; St. Amour, The Copywrights;
Vaidhyanathan, Copyrights and Copywrongs.

Two Bits Christopher M. Kelty 205

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

transparent media form with no more or less effect on the circulation or evaluation
of ideas than manuscripts or television. Johns notes in particular the influence of
Elizabeth Eisensteins scholarship on the printing press (and Bruno Latours
dependence on this in turn), which very strongly identified the characteristics of
the printed work with the cultural changes seen to follow, including the success of
the scientific revolution and the experimental method.330 For example, Eisenstein
argued that fixitythe fact that a set of printed books can be exact copies of each
otherimplied various transformations in knowledge. Johns, however, is at pains to
show just how unreliable texts are often perceived to be. From which sources do
they come? Are they legitimate? Do they have the backing or support of scholars
or the crown? In short, fixity can imply sound knowledge only if there is a system
of evaluation already in place. Johns suggests a reversal of this now
common-sense notion: ”We may consider fixity not as an inherent quality, but as a
transitive one. . . . We may adopt the principle that fixity exists only inasmuch as
it is recognized and acted upon by peopleand not otherwise. The consequence of
this change in perspective is that print culture itself is immediately laid open to
analysis. It becomes [pg274] a result of manifold representations, practices and
conflicts, rather than just the manifold cause with which we are often presented. In
contrast to talk of a print logic imposed on humanity, this approach allows us to
recover the construction of different print cultures in particular historical
circumstances.”331

Johnss work focuses on the elaborate and difficult cultural, social, and economic 797

work involved, in the sixteenth and seventeenth centuries, in transforming the
European book into the kind of authority it is taken to be across the globe today.
The creation and standardization not just of books but of a publishing
infrastructure involved the kind of careful social engineering, reputation
management, and skills of distinction, exclusion, and consensus that science
studies has effectively explored in science and engineering. Hence, Johns focuses
on ”print-in-the-making” and the relationship of the print culture of that period to
the reliability of knowledge. Instead of making broad claims for the transformation
of knowledge by print (eerily similar in many respects to the broad claims made
for the Internet), Johns explores the clash of representations and practices
necessary to create the sense, in the twentieth century, that there really is or was
only one print culture.
The problem of publication that Connexions confronts is thus not simply caused by 798

the invention or spread of the Internet, much less that of Free Software. Rather, it
is a confrontation with the problems of producing stability and finality under very
different technical, legal, and social conditionsa problem more complex even than
the ”different print cultures in particular historical circumstances” that Johns
speaks of in regard to the book. Connexions faces two challenges: that of figuring
out the difference that today introduces with respect to yesterday, and that of
creating or modifying an infrastructure in order to satisfy the demands of a
properly authoritative knowledge. Connexions textbooks of necessity look
different from conventional textbooks; they consist of digital documents, or
”modules,” that are strung together and made available through the Web, under a

330Eisenstein, The Printing Press as an Agent of Change. Eisensteins work makes direct reference to
McLuhans thesis in The Gutenberg Galaxy, and Latour relies on these works and others in ”Drawing
Things Together.”
331Johns, The Nature of the Book, 19-20.

Two Bits Christopher M. Kelty 206

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Creative Commons license that allows for free use, reuse, and modification. This
version of ”publication” clearly has implications for the meaning of authorship,
ownership, stewardship, editing, validation, collaboration, and verification.
The conventional appearance of a bookin bookstores, through mail-order, in book 799

clubs, libraries, or universitieswas an event that signified, as the name suggests,
its official public appearance [pg275] in the world. Prior to this event, the text
circulated only privately, which is to say only among the relatively small network
of people who could make copies of it or who were involved in its writing, editing,
proofreading, reviewing, typesetting, and so on. With the Internet, the same text
can be made instantly available at each of these stages to just as many or more
potential readers. It effectively turns the event of publication into a notional
eventthe click of a buttonrather than a highly organized, material event. Although
it is clear that the practice of publication has become denaturalized or destabilized
by the appearance of new information technologies, this hardly implies that the
work of stabilizing the meaning of publicationand producing authoritative
knowledge as a resulthas ceased. The tricky part comes in understanding how
Free Software is used as a template by which the authority of publication in the
Gutenberg Galaxy is being transformed into the authority of publication in the
Turing Universe.

Publication in Connexions 800

In the case of Connexions there are roughly three stages to the creation of content. 801

The first, temporally speaking, is whatever happens before Connexions is involved,
that is, the familiar practices of what I would call composition, rather than simply
writing. Some project must be already under way, perhaps started under the
constraints of and in the era of the book, perhaps conceived as a digital textbook
or an online textbook, but still, as of yet, written on paper or saved in a Word
document or in LaTeX, on a scholars desktop. It could be an individual project, as
in the case of Richs initial plan to write a DSP textbook, or it could be a large
collaborative project to write a textbook.
The second stage is the one in which the document or set of documents is 802

translated (”Connexified”) into the mark-up system used by Connexions.
Connexions uses the eXtensible Mark-up Language (XML), in particular a subset of
tags that are appropriate to textbooks. These ”semantic” tags (e.g., <term>) refer
only to the meaning of the text they enclose, not to the ”presentation” or syntactic
look of what they enclose; they give the document the necessary structure it needs
to be transformed in a number of creative ways. Because XML is related only to
content, and not to [pg276] presentation (it is sometimes referred to as ”agnostic”),
the same document in Connexions can be automatically made to look a number of
different ways, as an onscreen presentation in a browser, as a pdf document, or as
an on-demand published work that can be printed out as a book, complete with
continuous page numbering, footnotes (instead of links), front and back matter,
and an index. Therein lies much of Connexionss technical wizardry.
During the second stage, that of being marked up in XML, the document is not 803

quite public, although it is on the Internet; it is in what is called a workgroup,
where only those people with access to the particular workgroup (and those have
been invited to collaborate) can see the document. It is only when the document is
finished, ready to be distributed, that it will enter the third, ”published” stagethe

Two Bits Christopher M. Kelty 207

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

stage at which anyone on the Internet can ask for the XML document and the
software will display it, using style sheets or software converters, as an HTML
page, a pdf document for printing, or as a section of a larger course. However,
publication does not here signify finality; indeed, one of the core advantages of
Connexions is that the document is rendered less stable than the book-object it
mimics: it can be updated, changed, corrected, deleted, copied, and so on, all
without any of the rigmarole associated with changing a published book or article.
Indeed, the very powerful notion of fixity theorized by McLuhan and Eisenstein is
rendered moot here. The fact that a document has been printed (and printed as a
book) no longer means that all copies will be the same; indeed, it may well change
from hour to hour, depending on how many people contribute (as in the case of
Free Software, which can go through revisions and updates as fast, or faster, than
one can download and install new versions). With Wikipedia entries that are
extremely politicized or active, for example, a ”final” text is impossible, although
the dynamics of revision and counter-revision do suggest outlines for the
emergence of some kinds of stability. But Connexions differs from Wikipedia with
respect to this finality as well, because of the insertion of the second stage, during
which a self-defined group of people can work on a nonpublic text before
committing changes that a public can see.
It should be clear, given the example of Connexions, or any similar project such as 804

Wikipedia, that the changing meaning of ”publication” in the era of the Internet
has significant implications, both practical (they affect the way people can both
write and publish [pg277] their works) and legal (they fit uneasily into the categories
established for previous media). The tangibility of a textbook is quite obviously
transformed by these changes, but so too is the cultural significance of the
practice of writing a textbook. And if textbooks are written differently, using new
forms of collaboration and allowing novel kinds of transformation, then the
validation, certification, and structure of authority of textbooks also change,
inviting new forms of open and democratic participation in writing, teaching, and
learning. No longer are all of the settled practices of authorship, collaboration, and
publication configured around the same institutional and temporal scheme (e.g.,
the book and its publishing infrastructure). In a colloquial sense, this is obvious, for
instance, to any musician today: recording and releasing a song to potentially
millions of listeners is now technically possible for anyone, but how that fact
changes the cultural significance of music creation is not yet clear. For most
musicians, creating music hasnt changed much with the introduction of digital
tools, since new recording and composition technologies largely mimic the
recording practices that preceded them (for example, a program like Garage Band
literally looks like a four-track recorder on the screen). Similarly, much of the
practice of digital publication has been concerned with recreating something that
looks like traditional publication.332

Perhaps unsurprisingly, the Connexions team spent a great deal of time at the 805

outset of the project creating a pdf-document-creation system that would
essentially mimic the creation of a conventional textbook, with the push of a
button.333 But even this process causes a subtle transformation: the concept of

332On this subject, cf. Pablo Boczkowskis study of the digitization of newspapers, Digitizing the News.
333Conventional here is actually quite historically proximate: the system creates a pdf document by
translating the XML document into a LaTeX document, then into a pdf document. LaTeX has been, for
some twenty years, a standard text-formatting and typesetting language used by some [pg345] sectors

Two Bits Christopher M. Kelty 208

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

”edition” becomes much harder to track. While a conventional textbook is a stable
entity that goes through a series of printings and editions, each of which is marked
on its publication page, a Connexions document can go through as many versions
as an author wants to make changes, all the while without necessarily changing
editions. In this respect, the modulation of the concept of source code translates
the practices of updating and ”versioning” into the realm of textbook writing.
Recall the cases ranging from the ”continuum” of UNIX versions discussed by Ken
Thompson to the complex struggles over version control in the Linux and Apache
projects. In the case of writing source code, exactitude demands that the change
of even a single character be tracked and labeled as a version change, whereas a
[pg278] conventional-textbook spelling correction or errata issuance would hardly
create the need for a new edition.
In the Connexions repository all changes to a text are tracked and noted, but the 806

identity of the module does not change. ”Editions” have thus become ”versions,”
whereas a substantially revised or changed module might require not reissuance
but a forking of that module to create one with a new identity. Editions in
publishing are not a feature of the medium per se; they are necessitated by the
temporal and spatial practices of publication as an event, though this process is
obviously made visible only in the book itself. In the same way, versioning is now
used to manage a process, but it results in a very different configuration of the
medium and the material available in that medium. Connexions traces the
template of software production (sharing, porting, and forking and the norms and
forms of coordination in Free Software) directly onto older forms of publication.
Where the practices match, no change occurs, and where they dont, it is the
reorientation of knowledge and power and the emergence of recursive publics that
serves as a guide to the development of the system.
Legally speaking, the change from editions to versions and forks raises troubling 807

questions about the boundaries and status of a copyrighted work. It is a peculiar
feature of copyright law that it needs to be updated regularly each time the media
change, in order to bring certain old practices into line with new possibilities.
Scattered throughout the copyright statutes is evidence of old new media:
gramophones, jukeboxes, cable TV, photocopiers, peer-to-peer file-sharing
programs, and so on. Each new form of communication shifts the assumptions of
past media enough that they require a reevaluation of the putative underlying
balance of the constitutional mandate that gives (U.S.) intellectual-property law its
inertia. Each new device needs to be understood in terms of creation, storage,
distribution, production, consumption, and tangibility, in order to assess the
dangers it poses to the rights of inventors and artists.
Because copyright law ”hard codes” the particular media into the statutes, 808

copyright law is comfortable with, for example, book editions or musical
recordings. But in Connexions, new questions arise: how much change constitutes
a new work, and thus demands a new copyright license? If a licensee receives one

of the publishing industry (notably mathematics, engineering, and computer science). Were it not for
the existence of this standard from which to bootstrap, the Connexions project would have faced a
considerably more difficult challenge, but much of the infrastructure of publishing has already been
partially transformed into a computer-mediated and -controlled system whose final output is a
printed book. Later in Connexionss lifetime, the group coordinated with an Internet-publishing
startup called Qoop.com to take the final step and make Connexions courses available as
print-on-demand, cloth-bound textbooks, complete with ISBNs and back-cover blurbs.

Two Bits Christopher M. Kelty 209

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

copy of a work, to which versions will he or she retain rights after changes?
Because [pg279] of the complexity of the software involved, there are also questions
that the law simply cannot deal with (just as it had not been able to do in the late
1970s with respect to the definition of software): is the XML document equivalent
to the viewable document, or must the style sheet also be included? Where does
the ”content” begin and the ”software” end? Until the statutes either incorporate
these new technologies or are changed to govern a more general process, rather
than a particular medium, these questions will continue to emerge as part of the
practice of writing.
This denaturalization of the notion of ”publication” is responsible for much of the 809

surprise and concern that greets Connexions and projects like it. Often, when I
have shown the system to scholars, they have displayed boredom mixed with fear
and frustration: ”It can never replace the book.” On the one hand, Connexions has
made an enormous effort to make its output look as much like conventional books
as possible; on the other hand, the anxiety evinced is justified, because what
Connexions seeks to replace is not the book, which is merely ink and paper, but
the entire publishing process. The fact that it is not replacing the book per se, but
the entire process whereby manuscripts are made into stable and tangible objects
called books is too overwhelming for most scholars to contemplateespecially
scholars who have already mastered the existing process of book writing and
creation. The fact that the legal system is built to safeguard something prior to
and not fully continuous with the practice of Connexions only adds to the concern
that such a transformation is immodest and risky, that it endangers a practice with
centuries of stability behind it. Connexions, however, is not the cause of
destabilization; rather, it is a response to or recognition of a problem. It is not a
new problem, but one that periodically reemerges: a reorientation of knowledge
and power that includes questions of enlightenment and rationality, democracy
and self-governance, liberal values and problems of the authority and validation of
knowledge. The salient moments of correlation are not the invention of the
printing press and the Internet, but the struggle to make published books into a
source of authoritative knowledge in the seventeenth and eighteenth centuries
and the struggle to find ways to do the same with the Internet today.334

Connexions is, in many ways, understood by its practitioners to be both a response 810

to the changing relations of knowledge and power, [pg280] one that reaffirms the
fundamental values of academic freedom and the circulation of knowledge, and
also an experiment with, even a radicalization of, the ideals of both Free Software
and Mertonian science. The transformation of the meaning of publication implies a
fundamental shift in the status, in the finality of knowledge. It seeks to make of
knowledge (knowledge in print, not in minds) something living and constantly
changing, as opposed to something static and final. The fact that publication no
longer signifies finalitythat is, no longer signifies a state of fixity that is assumed in
theory (and frequently in practice) to account for a texts reliabilityhas implications
for how the text is used, reused, interpreted, valued, and trusted.335 Whereas the

334See Johns, The Nature of the Book; Warner, The Letters of the Republic.
335On fixity, see Eisensteins The Printing Press as an Agent of Change which cites McLuhans The
Gutenberg Galaxy. The stability of texts is also questioned routinely by textual scholars, especially
those who work with manuscripts and complicated varoria (for an excellent introduction, see
Bornstein and Williams, Palimpsest). Michel Foucaults ”What Is an Author?” addresses a related but
orthogonal problematic and is unconcerned with the relatively sober facts of a changing medium.

Two Bits Christopher M. Kelty 210

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

traditional form of the book is the same across all printed versions or else follows
an explicit practice of appearing in editions (complete with new prefaces and
forewords), a Connexions document might very well look different from week to
week or year to year.336 While a textbook might also change significantly to reflect
the changing state of knowledge in a given field, it is an explicit goal of
Connexions to allow this to happen ”in real time,” which is to say, to allow
educators to update textbooks as fast as they do scientific knowledge.337

These implications are not lost on the Connexions team, but neither are they 811

understood as goals or as having simple solutions. There is a certain immodest,
perhaps even reckless, enthusiasm surrounding these implications, an enthusiasm
that can take both polymath and transhumanist forms. For instance, the
destabilization of the contemporary textbook-publishing system that Connexions
represents is (according to Rich) a more accurate way to represent the
connections between concepts than a linear textbook format. Connexions thus
represents a use of technology as an intervention into an existing context of
practice. The fact that Connexions could also render the reliability or
trustworthiness of scholarly knowledge unstable is sometimes discussed as an
inevitable outcome of technical changesomething that the world at large, not
Connexions, must learn to deal with.
To put it differently, the ”goal” of Connexions was never to destroy publishing, but 812

it has been structured by the same kind of imaginations of moral and technical
order that pervade Free Software and the construction of the Internet. In this
sense Rich, Brent, and others are geeks in the same sense as Free Software geeks:
they [pg281] share a recursive public devoted to achieving a moral and technical
order in which openness and modifiability are core values (”If we are successful,
we will disappear”). The implication is that the existing model and infrastructure
for the publication of textbooks is of a different moral and technical order, and
thus that Connexions needs to innovate not only the technology (the source code
or the openness of the system) or the legal arrangements (licenses) but also the
336A salient and recent point of comparison can be found in the form of Lawrence Lessigs ”second
edition” of his book Code, which is titled Code: Version 2.0 (version is used in the title, but edition is
used in the text). The first book was published in 1999 (”ancient history in Internet time”), and
Lessig convinced the publisher to make it available as a wiki, a collaborative Web site which can be
directly edited by anyone with access. The wiki was edited and updated by hordes of geeks, then
”closed” and reedited into a second edition with a new preface. It is a particularly tightly controlled
example of collaboration; although the wiki and the book were freely available, the modification and
transformation of them did not amount to a simple free-for-all. Instead, Lessig leveraged his own
authority, his authorial voice, and the power of Basic Books to create something that looks very much
like a traditional second edition, although it was created by processes unimaginable ten years ago.
337The most familiar comparison is Wikipedia, which was started after Connexions, but grew far more
quickly and dynamically, largely due to the ease of use of the system (a bone of some contention
among the Connexions team). Wikipedia has come under assault primarily for being unreliable. The
suspicion and fear that surround Wikipedia are similar to those that face Connexions, but in the case
of Wikipedia entries, the commitment to openness is stubbornly meritocratic: any article can be
edited by anyone at anytime, and it matters not how firmly one is identified as an expert by rank,
title, degree, or experiencea twelve year olds knowledge of the Peloponnesian War is given the same
access and status as an eighty-year-old classicists. Articles are not owned by individuals, and [pg346]

all work is pseudonymous and difficult to track. The range of quality is therefore great, and the
mainstream press has focused largely on whether Wikipedia is more or less reliable than
conventional encyclopedias, not on the process of knowledge production. See, for instance, George
Johnson, ”The Nitpicking of the Masses vs. the Authority of the Experts,” New York Times, 3 January
2006, Late EditionFinal, F2; Robert McHenry, ”The Faith-based Encyclopedia,” TCS Daily, 15
November 2004, ⌜ http://www.techcentralstation.com/111504A.html ⌟ .

Two Bits Christopher M. Kelty 211

http://www.techcentralstation.com/111504A.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

very norms and forms of textbook writing itself (coordination and, eventually, a
movement). If publication once implied the appearance of reliable, final textseven
if the knowledge therein could be routinely contested by writing more texts and
reviews and critiquesConnexions implies the denaturalization of not knowledge per
se, but of the process whereby that knowledge is stabilized and rendered reliable,
trustworthy.
A keyword for the transformation of textbook writing is community, as in the 813

tagline of the Connexions project: ”Sharing Knowledge and Building Communities.”
Building implies that such communities do not yet exist and that the technology
will enable them; however, Connexions began with the assumption that there exist
standard academic practices and norms of creating teaching materials. As a result,
Connexions both enables these practices and norms, by facilitating a digital
version of the textbook, and intervenes in them, by creating a different process for
creating a textbook. Communities are both assumed and desired. Sometimes they
are real (a group of DSP engineers, networked around Rich and others who work in
his subspecialty), and sometimes they are imagined (as when in the process of
grant writing we claim that the most important component of the success of the
project is the ”seeding” of scholarly communities). Communities, furthermore, are
not audiences or consumers, and sometimes not even students or learners. They
are imagined to be active, creative producers and users of teaching materials,
whether for teaching or for the further creation of such materials. The structure of
the community has little to do with issues of governance, solidarity, or pedagogy,
and much more to do with a set of relationships that might obtain with respect to
the creation of teaching materialsa community of collaborative production or
collaborative debugging, as in the modulation of forms of coordination, modulated
to include the activity of creating teaching materials. [pg282]

Agency and Structure in Connexions 814

One of the most animated whiteboard conversations I remember having with Brent 815

and Ross concerned difference between the possible ”roles” that a Connexions
user might occupy and the implications this could have for both the technical
features of the system and the social norms that Connexions attempts to maintain
and replicate. Most software systems are content to designate only ”users,” a
generic name-and-password account that can be given a set of permissions (and
which has behind it a long and robust tradition in computer-operating-system and
security research). Users are users, even if they may have access to different
programs and files. What Connexions needed was a way to designate that the
same person might have two different exogenous roles: a user might be the
author, but not the owner of the content, and vice versa. For instance, perhaps
Rice University maintains the copyright for a work, but the author is credited for its
creation. Such a situationknown, in legal terms, as ”work for hire”is routine in
some universities and most corporations. So while the author is generally given
the freedom and authority to create and modify the text as he or she sees fit, the
university asserts copyright ownership in order to retain the right to commercially
exploit the work. Such a situation is far from settled and is, of course, politically
fraught, but the Connexions system, in order to be useful at all to anyone, needed
to accommodate this fact. Taking an oppositional political stand would render the
system useless in too many cases or cause it to become precisely the kind of

Two Bits Christopher M. Kelty 212

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

authorless, creditless system as Wikipediaa route not desired by many academics.
In a perfectly open world all Connexions modules might each have identical
authors and owners, but pragmatism demands that the two roles be kept
separate.
Furthermore, there are many people involved every day in the creation of 816

academic work who are neither the author nor the owner: graduate students and
undergraduates, research scientists, technicians, and others in the grand,
contested, complex academic ecology. In some disciplines, all contributors may
get authorship credit and some of them may even share ownership, but often
many of those who do the work get mentioned only in acknowledgments, or not at
all. Again, although the impulse of the creators of Connexions might be to level
the playing field and allow only one kind of user, the fact of the matter is that
academics simply would not use [pg283] such a system.338 The need for a role such
as ”maintainer” (which might also include ”editor”), which was different from
author or owner, thus also presented itself.
As Brent, Ross, and I stared at the whiteboard, the discovery of the need for 817

multiple exogenous roles hit all of us in a kind of slow-motion shockwave. It was
not simply that the content needed to have different labels attached to it to keep
track of these people in a databasesomething deeper was at work: the law and the
practice of authorship actually dictated, to a certain extent, what the software
itself should look like. All of sudden, the questions were preformatted, so to speak,
by the law and by certain kinds of practices that had been normalized and thus
were nearly invisible: who should have permission to change what? Who will have
permission to add or drop authors? Who will be allowed to make what changes,
and who will have the legal right to do so and who the moral or customary right?
What implications follow from the choices the designers make and the choices we
present to authors or maintainers?
The Creative Commons licenses were key to revealing many of these questions. 818

The licenses were in themselves modulations of Free Software licenses, but
created with people like artists, musicians, scholars, and filmmakers in mind.
Without them, the content in Connexions would be unlicensed, perhaps intended
to be in the public domain, but ultimately governed by copyright statutes that
provided no clear answers to any of these questions, as those statutes were
designed to deal with older media and a different publication process. Using the
Creative Commons licenses, on the other hand, meant that the situation of the
content in Connexions became well-defined enough, in a legal sense, to be used
as a constraint in defining the structure of the software system. The license itself
provided the map of the territory by setting parameters for things such as

338Again, a comparison with Wikipedia is apposite. Wikipedia is, morally speaking, and especially in
the persona of its chief editor, Jimbo Wales, totally devoted to merit-based equality, with users
getting no special designation beyond the amount and perceived quality of the material they
contribute. Degrees or special positions of employment are anathema. It is a quintessentially
American, anti-intellectual-fueled, Horatio Alger-style approach in which the slate is wiped clean and
contributors are given a chance to prove themselves independent of background. Connexions, by
contrast, draws specifically from the ranks of intellectuals or academics and seeks to replace the
infrastructure of publishing. Wikipedia is interested only in creating a better encyclopedia. In this
respect, it is transhumanist in character, attributing its distinctiveness and success to the advances
in technology (the Internet, wiki, broadband connections, Google). Connexions on the other hand is
more polymathic, devoted to intervening into the already complexly constituted organizational
practice of scholarship and academia.

Two Bits Christopher M. Kelty 213

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

distribution, modification, attribution, and even display, reading, or copying.
For instance, when the author and owner are different, it is not at all obvious who 819

should be given credit. Authors, especially academic authors, expect to be given
credit (which is often all they get) for an article or a textbook they have written, yet
universities often retain ownership of those textbooks, and ownership would seem
to imply a legal right to be identified as both owner and author (e.g., Forrester
Research reports or UNESCO reports, which hide the [pg284] identity of authors). In
the absence of any licenses, such a scenario has no obvious solution or depends
entirely on the specific context. However, the Creative Commons licenses specified
the meaning of attribution and the requirement to maintain the copyright notice,
thus outlining a procedure that gave the Connexions designers fixed constraints
against which to measure how they would implement their system.
A positive result of such constraints is that they allow for a kind of institutional 820

flexibility that would not otherwise be possible. Whether a university insists on
expropriating copyright or allows scholars to keep their copyrights, both can use
Connexions. Connexions is more ”open” than traditional textbook publishing
because it allows a greater number of heterogeneous contributors to participate,
but it is also more ”open” than something like Wikipedia, which is ideologically
committed to a single definition of authorship and ownership (anonymous,
reciprocally licensed collaborative creation by authors who are also the owners of
their work). While Wikipedia makes such an ideological commitment, it cannot be
used by institutions that have made the decision to operate as expropriators of
content, or even in cases wherein authors willingly allow someone else to take
credit. If authors and owners must be identical, then either the author is identified
as the owner, which is illegal in some cases, or the owner is identified as the
author, a situation no academic is willing to submit to.
The need for multiple roles also revealed other peculiar and troubling problems, 821

such as the issue of giving an ”identity” to long-dead authors whose works are out
of copyright. So, for instance, a piece by A. E. Housman was included as a module
for a class, and while it is clear that Housman is the author, the work is no longer
under copyright, so Housman is no longer the copyright holder (nor is the society
which published it in 1921). Yet Connexions requires that a copyright be attached
to each module to allow it to be licensed openly. This particular case, of a dead
author, necessitated two interesting interventions. Someone has to actually create
an account for Housman and also issue the work as an ”edition” or derivative
under a new copyright. In this case, the two other authors are Scott McGill and
Christopher Kelty. A curious question arose in this context: should we be listed
both as authors and owners (and maintainers), or only as owners and maintainers?
And if someone uses the module in a new context (as they have the right to do,
[pg285] under the license), will they be required to give attribution only to Housman,
or also to McGill and Kelty as well? What rights to ownership do McGill and Kelty
have over the digital version of the public-domain text by Housman?339

339An even more technical feature concerned the issue of the order of authorship. The designers at
first decided to allow Connexions to simply display the authors in alphabetical order, a practice
adopted by some disciplines, like computer science. However, in the case of the Housman example
this resulted in what looked like a module authored principally by me, and only secondarily by A. E.
Housman. And without the ability to explicitly designate order of authorship, many disciplines had
no way to express their conventions along these lines. As a result, the system was redesigned to
allow users to designate the order of authorship as well.

Two Bits Christopher M. Kelty 214

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

The discussion of roles circulated fluidly across concepts like law (and legal 822

licenses), norms, community, and identity. Brent and Ross and others involved had
developed sophisticated imaginations of how Connexions would fit into the
existing ecology of academia, constrained all the while by both standard goals, like
usability and efficiency, and by novel legal licenses and concerns about the
changing practices of authors and scholars. The question, for instance, of how a
module can be used (technically, legally) is often confused with, or difficult to
disentangle from, how a module should be used (technically, legally, or, more
generally, ”socially”with usage shaped by the community who uses it). In order to
make sense of this, Connexions programmers and participants like myself are
prone to using the language of custom and norm, and the figure of community, as
in ”the customary norms of a scholarly community.”

From Law and Technology to Norm 823

The meaning of publication in Connexions and the questions about roles and their 824

proper legal status emerged from the core concern with reuse, which is the
primary modulation of Free Software that Connexions carries out: the modulation
of the meaning of source code to include textbook writing. What makes source
code such a central component of Free Software is the manner in which it is shared
and transformed, not the technical features of any particular language or program.
So the modulation of source code to include textbooks is not just an attempt to
make textbooks exact, algorithmic, or digital, but an experiment in sharing
textbook writing in a similar fashion.
This modulation also affects the other components: it creates a demand for 825

openness in textbook creation and circulation; it demands new kinds of copyright
licenses (the Creative Commons licenses); and it affects the meaning of
coordination among scholars, ranging from explicit forms of collaboration and
co-creation to the entire spectrum of uses and reuses that scholars normally make
of their [pg286] peers works. It is this modulation of coordination that leads to the
second core concern of Connexions: that of the existence of ”norms” of scholarly
creation, use, reuse, publication, and circulation.
Since software programmers and engineers are prone to thinking about things in 826

concrete, practical, and detailed ways, discussions of creation, use, and circulation
are rarely conducted at the level of philosophical abstraction. They are carried out
on whiteboards, using diagrams.
The whiteboard diagram transcribed in figure 8 was precipitated by a fairly precise 827

question: ”When is the reuse of something in a module (or of an entire module)
governed by academic norms and when is it subject to the legal constraints of the
licenses?” For someone to quote a piece of text from one module in another is
considered normal practice and thus shouldnt involve concerns about legal rights
and duties to fork the module (create a new modified version, perhaps containing
only the section cited, which is something legal licenses explicitly allow). But what
if someone borrows, say, all of the equations in a module about information theory
and uses them to illustrate a very different point in a different module. Does he or
she have either a normal or a legal right to do so? Should the equations be cited?
What should that citation look like? What if the equations are particularly hard to
mark-up in the MathML language and therefore represent a significant investment

Two Bits Christopher M. Kelty 215

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

in time on the part of the original author? Should the law govern this activity, or
should norms?
2bits_09_08-100.png,w640h534 [* Whiteboard diagram: the cascade of reuse in 828

Connexions. Conception by Ross Reedstrom, Brent Hendricks, and Christopher
Kelty. Transcribed in the authors fieldnotes, 2003.]
There is a natural tendency among geeks to answer these questions solely with 829

respect to the law; it is, after all, highly codified and seemingly authoritative on
such issues. However, there is often no need to engage the law, because of the
presumed consensus (”academic norms”) about how to proceed, even if those
norms conflict with the law. But these norms are nowhere codified, and this makes
geeks (and, increasingly, academics themselves) uneasy. As in the case of a
requirement of attribution, the constraints of a written license are perceived to be
much more stable and reliable than those of culture, precisely because culture is
what remains contested and contestable. So the idea of creating a new ”version”
of a text is easier to understand when it is clearly circumscribed as a legally
defined ”derivative work.” The Connexions software was therefore implemented in
such a way that the legal right to create a derived work (to fork a module) could be
done with the press of [pg287] a button: a distinct module is automatically created,
and it retains the name of the original author and the original owner, but now also
includes the new authors name as author and maintainer. That new author can
proceed to make any number of changes.
But is forking always necessary? What if the derivative work contains only a few 830

spelling corrections and slightly updated information? Why not change the existing
module (where such changes would be more akin to issuing a new edition), rather
than create a legally defined derivative work? Why not simply suggest the
changes to the original author? Why not collaborate? While a legal license gives
people the right to do all of these things without ever consulting the person who
licensed it, there may well be occasions [pg288] when it makes much more sense to
ignore those rights in favor of other norms. The answers to these questions
depend a great deal on the kind and the intent of the reuse. A refined version of
the whiteboard diagram, depicted in figure 9, attempts to capture the various
kinds of reuse and their intersection with laws, norms, and technologies.
2bits_09_09-100.png,w640h388 [* Whiteboard diagram transformed: forms of 831

reuse in Connexions. Conception by Christopher Kelty, 2004.]
The center of the diagram contains a list of different kinds of imaginable reuses, 832

arrayed from least interventionist at the top to most interventionist at the bottom,
and it implies that as the intended transformations become more drastic, the
likelihood of collaboration with the original author decreases. The arrow on the left
indicates the legal path from cultural norms to protected fair uses; the arrow on
the right indicates the technical path from built-in legal constraints based on the
licenses to software tools that make collaboration (according to presumed
scholarly norms) easier than the alternative (exercising the legal right to make a
derivative work). With the benefit of hindsight, it seems that the arrows on either
side should actually be a circle that connect laws, technologies, and norms in a
chain of influence and constraint, since it is clear in retrospect that the norms of
authorial practice have actually changed (or at least have been made explicit)
based on the existence of licenses and the types of tools available (such as blogs
and Wikipedia).

Two Bits Christopher M. Kelty 216

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

The diagram can best be understood as a way of representing, to Connexions itself 833

(and its funders), the experiment under way with the components of Free Software.
By modulating source code to include the writing of scholarly textbooks,
Connexions made visible the need for new copyright licenses appropriate to this
content; by making the system Internet-based and relying on open standards such
as XML and Open Source components, Connexions also modulated the concept of
openness to include textbook publication; and by making the system possible as
an open repository of freely licensed textbook modules, Connexions made visible
the changed conditions of coordination, not just between two collaborating
authors, but within the entire system of publication, citation, use, reuse, borrowing,
building on, plagiarizing, copying, emulating, and so on. Such changes to
coordination may or may not take hold. For many scholars, they pose an immodest
challenge to a working system that has developed over centuries, but for others
they represent the removal of arbitrary constraints that prevent [pg289] novel and
innovative forms of knowledge creation and association rendered possible in the
last thirty to forty years (and especially in the last ten). For some, these
modulations might form the basis for a final modulationa Free Textbooks
movementbut as yet no such movement exists.
In the case of shared software source code, one of the principal reasons for 834

sharing it was to reuse it: to build on it, to link to it, to employ it in ways that made
building more complex objects into an easier task. The very design philosophy of
UNIX well articulates the necessity of modularity and reuse, and the idea is no less
powerful in other areas, such as textbooks. But just as the reuse of software is not
simply a feature of softwares technical characteristics, the idea of ”reusing”
scholarly materials implies all kinds of questions that are not simply questions of
recombining texts. The ability to share source codeand the ability to create
complex software based on itrequires modulations of both the legal meaning of
software, as in the case of EMACS, and the organizational form, as in the [pg290]

emergence of Free Software projects other than the Free Software Foundation (the
Linux kernel, Perl, Apache, etc.).
In the case of textbook reuse (but only after Free Software), the technical and the 835

legal problems that Connexions addresses are relatively well specified: what
software to use, whether to use XML, the need for an excellent user interface, and
so on. However, the organizational, cultural, or practical meaning of reuse is not
yet entirely clear (a point made by figures 8 and 9). In many ways, the recognition
that there are cultural norms among academics mirrors the (re)discovery of norms
and ethics among Free Software hackers.340 But the label ”cultural norms” is a
mere catch-all for a problem that is probably better understood as a mixture of
concrete technical, organizational, and legal questions and as more or less abstract
social imaginaries through which a particular kind of material order is understood
and pursuedthe creation of a recursive public. How do programmers, lawyers,
engineers, and Free Software advocates (and anthropologists) ”figure out” how
norms work? How do they figure out ways to operationalize or make use of them?
How do they figure out how to change them? How do they figure out how to create
new norms? They do so through the modulations of existing practices, guided by

340I refer here to Eric Raymonds ”discovery” that hackers possess unstated norms that govern what
they do, in addition to the legal licenses and technical practices they engage in (see Raymond,
”Homesteading the Noosphere”). For a critique and background on hacker ethics and norms, see
Coleman, ”The Social Construction of Freedom.”

Two Bits Christopher M. Kelty 217

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

imaginaries of moral and technical order. Connexions does not tend toward
becoming Free Software, but it does tend toward becoming a recursive public with
respect to textbooks, education, and the publication of pedagogical techniques
and knowledge. The problematic of creating an independent, autonomous public is
thus the subterranean ground of both Free Software and Connexions.
To some extent, then, the matter of reuse raises a host of questions about the 836

borders and boundaries in and of academia. Brent, Ross, and I assumed at the
outset that communities have both borders and norms, and that the two are
related. But, as it turns out, this is not a safe assumption. At neither the technical
nor the legal level is the use of the software restricted to academicsindeed, there
is no feasible way to do that and still offer it on the Internetnor does anyone
involved wish it to be so restricted. However, there is an implicit sense that the
people who will contribute content will primarily be academics and educators (just
as Free Software participants are expected, but not required to be programmers).
As figure 9 makes clear, there may well be tremendous variation in the kinds of
reuse that people wish to make, even within academia. [pg291] Scholars in the
humanities, for instance, are loath to even imagine others creating derivative
works with articles they have written and can envision their work being used only
in the conventional manner of being read, cited, and critiqued. Scholars in
engineering, biology, or computer science, on the other hand, may well take
pleasure in the idea or act of reuse, if it is adequately understood to be a
”scientific result” or a suitably stable concept on which to build.341 Reuse can have
a range of different meanings depending not only on whether it is used by scholars
or academics, but within that heterogeneous group itself.
The Connexions software does not, however, enforce disciplinary differences. If 837

anything it makes very strong and troubling claims that knowledge is knowledge
and that disciplinary constraints are arbitrary. Thus, for instance, if a biologist
wishes to transform a literary scholars article on Darwins tropes to make it reflect
current evolutionary theory, he or she could do so; it is entirely possible, both
legally and technically. The literary scholar could react in a number of ways,
including outrage that the biologist has misread or misunderstood the work or
pleasure in seeing the work refined. Connexions adheres rigorously to its ideas of
openness in this regard; it neither encourages nor censures such behavior.
By contrast, as figure 9 suggests, the relationship between these two scholars can 838

be governed either by the legal specification of rights contained in the licenses (a
privately ordered legal regime dependent on a national-cum-global statutory
regime) or by the customary means of collaboration enabled, perhaps enhanced,
by software tools. The former is the domain of the state, the legal profession, and
a moral and technical order that, for lack of a better word, might be called
modernity. The latter, however, is the domain of the cultural, the informal, the
practical, the interpersonal; it is the domain of ethics (prior to its modernization,
perhaps) and of tradition.
If figure 9 is a recapitulation of modernity and tradition (what better role for an 839

anthropologist to play!), then the presumptive boundaries around ”communities”
define which groups possess which norms. But the very design of Connexionsits
technical and legal exactitudeimmediately brings a potentially huge variety of

341Bruno Latours Science in Action makes a strong case for the centrality of ”black boxes” in science
and engineering for precisely this reason.

Two Bits Christopher M. Kelty 218

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

traditions into conflict with one another. Can the biologist and the literary scholar
be expected to occupy the same universe of norms? Does the fact of being
academics, employees of a university, [pg292] or readers of Darwin ensure this
sharing of norms? How are the boundaries policed and the norms communicated
and reinforced?
The problem of reuse therefore raises a much broader and more complex question: 840

do norms actually exist? In particular, do they exist independent of the particular
technical, legal, or organizational practice in which groups of people existoutside
the coordinated infrastructure of scholarship and science? And if Connexions
raises this question, can the same question not also be asked of the elaborate
system of professions, disciplines, and organizations that coordinate the
scholarship of different communities? Are these norms, or are they ”technical” and
”legal” practices? What difference does formalization make? What difference does
bureaucratization make?342

The question can also be posed this way: should norms be understood as 841

historically changing constructs or as natural features of human behavior (regular
patterns, or conventions, which emerge inevitably wherever human beings
interact). Are they a feature of changing institutions, laws, and technologies, or do
they form and persist in the same way wherever people congregate? Are norms
features of a ”calculative agency,” as Michael Callon puts it, or are they features of
the evolved human mind, as Marc Hauser argues?343

The answer that my informants give, in practice, concerning the mode of 842

existence of cultural norms is neither. On the one hand, in the Connexions project
the question of the mode of existence of academic norms is unanswered; the basic
assumption is that certain actions are captured and constrained neither by legal
constraints nor technical barriers, and that it takes people who know or study
”communities” (i.e., nonlegal and nontechnical constraints) to figure out what
those actions may be. On some days, the project is modestly understood to enable
academics to do what they do faster and better, but without fundamentally
changing anything about the practice, institutions, or legal relations; on other
days, however, it is a radically transformative project, changing how people think
about creating scholarly work, a project that requires educating people and
potentially ”changing the culture” of scholarly work, including its technology, its
legal relations, and its practices.
In stark contrast (despite the very large degree of simpatico), the principal 843

members of Creative Commons answer the question of the existence of norms
quite differently than do those in Connexions: [pg293] they assert that norms not
only change but are manipulated and/or channeled by the modulation of technical
and legal practices (this is the novel version of law and economics that Creative
Commons is founded on). Such an assertion leaves very little for norms or for
culture; there may be a deep evolutionary role for rule following or for choosing
socially sanctioned behavior over socially unacceptable behavior, but the real
action happens in the legal and technical domains. In Creative Commons the
question of the existence of norms is answered firmly in the phrase coined by
342I should note, in my defense, that my efforts to get my informants to read Max Weber, Ferdinand
Tönnies, Henry Maine, or Emile Durkheim [pg347] proved far less successful than my creation of nice
Adobe Illustrator diagrams that made explicit the reemergence of issues addressed a century ago. It
was not for lack of trying, however.
343Callon, The Laws of the Markets; Hauser, Moral Minds.

Two Bits Christopher M. Kelty 219

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Glenn Brown: ”punt to culture.” For Creative Commons, norms are a prelegal and
pretechnical substrate upon which the licenses they create operate. Norms must
exist for the strategy employed in the licenses to make senseas the following story
illustrates.

On the Nonexistence of Norms in the Culture of No Culture 844

More than once, I have found myself on the telephone with Glenn Brown, staring at 845

notes, a diagram, or some inscrutable collection of legalese. Usually, the
conversations wander from fine legal points to music and Texas politics to Glenns
travels around the globe. They are often precipitated by some previous
conversation and by Glenns need to remind himself (and me) what we are in the
middle of creating. Or destroying. His are never simple questions. While the
Connexions project started with a repository of scholarly content in need of a
license, Creative Commons started with licenses in need of particular kinds of
content. But both projects required participants to delve into the details of both
licenses and the structure of digital content, which qualified me, for both projects,
as the intermediary who could help explore these intersections. My phone
conversations with Glenn, then, were much like the whiteboard conversations at
Connexions: filled with a mix of technical and legal terminology, and conducted
largely in order to give Glenn the sense that he had cross-checked his plans with
someone presumed to know better. I cant count the number of times I have hung
up the phone or left the conference room wondering, ”Have I just sanctioned
something mad?” Yet rarely have I felt that my interventions served to do more
than confirm suspicions or derail already unstable arguments. [pg294]

In one particular conversationthe ”punt to culture” conversationI found myself 846

bewildered by a sudden understanding of the process of writing legal licenses and
of the particular assumptions about human behavior that need to be present in
order to imagine creating these licenses or ensuring that they will be beneficial to
the people who will use them.
These discussions (which often included other lawyers) happened in a kind of 847

hypothetical space of legal imagination, a space highly structured by legal
concepts, statutes, and precedents, and one extraordinarily carefully attuned to
the fine details of semantics. A core aspect of operating within this imagination is
the distinction between law as an abstract semantic entity and law as a practical
fact that people may or may not deal with. To be sure, not all lawyers operate this
way, but the warrant for thinking this way comes from no less eminent an
authority than Oliver Wendell Holmes, for whom the ”Path of Law” was always
from practice to abstract rule, and not the reverse.344 The opposition is unstable,
but I highlight it here because it was frequently used as a strategy for constructing
precise legal language. The ability to imagine the difference between an abstract
rule designating legality and a rule encountered in practice was a first step toward
seeing how the language of the rule should be constructed.
I helped write, read, and think about the first of the Creative Commons licenses, 848

and it was through this experience that I came to understand how the crafting of
legal language works, and in particular how the mode of existence of cultural or
social norms relates to the crafting of legal language. Creative Commons licenses

344Oliver Wendell Holmes, ”The Path of Law.”

Two Bits Christopher M. Kelty 220

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

are not a familiar legal entity, however. They are modulations of the Free Software
license, but they differ in important ways.
The Creative Commons licenses allow authors to grant the use of their work in 849

about a dozen different waysthat is, the license itself comes in versions. One can,
for instance, require attribution, prohibit commercial exploitation, allow derivative
or modified works to be made and circulated, or some combination of all these.
These different combinations actually create different licenses, each of which
grants intellectual-property rights under slightly different conditions. For example,
say Marshall Sahlins decides to write a paper about how the Internet is cultural; he
copyrights the paper (”ľ 2004 Marshall Sahlins”), he requires that any use of it or
any copies of it maintain the copyright notice and the attribution of [pg295]

authorship (these can be different), and he furthermore allows for commercial use
of the paper. It would then be legal for a publishing house to take the paper off
Sahlinss Linux-based Web server and publish it in a collection without having to
ask permission, as long as the paper remains unchanged and he is clearly and
unambiguously listed as author of the paper. The publishing house would not get
any rights to the work, and Sahlins would not get any royalties. If he had specified
noncommercial use, the publisher would instead have needed to contact him and
arrange for a separate license (Creative Commons licenses are nonexclusive),
under which he could demand some share of revenue and his name on the cover
of the book.345 But say he was, instead, a young scholar seeking only peer
recognition and approbationthen royalties would be secondary to maximum
circulation. Creative Commons allows authors to assert, as its members put it,
”some rights reserved” or even ”no rights reserved.”
But what if Sahlins had chosen a license that allowed modification of his work. This 850

would mean that I, Christopher Kelty, whether in agreement with or in objection to
his work, could download the paper, rewrite large sections of it, add in my own
baroque and idiosyncratic scholarship, and write a section that purports to debunk
(or, what could amount to the same, augment) Sahlinss arguments. I would then
be legally entitled to re-release the paper as ”ľ 2004 Marshall Sahlins, with
modifications ľ 2007 Christopher Kelty,” so long as Sahlins is identified as the
author of the paper. The nature or extent of the modifications is not legally
restricted, but both the original and the modified version would be legally
attributed to Sahlins (even though he would own only the first paper).
In the course of a number of e-mails, chat sessions, and phone conversations with 851

Glenn, I raised this example and proposed that the licenses needed a way to
account for it, since it seemed to me entirely possible that were I to produce a
modified work that so distorted Sahlinss original argument that he did not want to
be associated with the modified paper, then he should have the right also to
repudiate his identification as author. Sahlins should, legally speaking, be able to
ask me to remove his name from all subsequent versions of my misrepresentation,
thus clearing his good name and providing me the freedom to continue sullying
mine into obscurity. After hashing it out with the expensive Palo Alto legal firm that
was officially drafting the licenses, we came up with text that said: [pg296] ”If You
create a Derivative Work, upon notice from any Licensor You must, to the extent
practicable, remove from the Derivative Work any reference to such Licensor or

345In December 2006 Creative Commons announced a set of licenses that facilitate the ”follow up”
licensing of a work, especially one initially issued under a noncommercial license.

Two Bits Christopher M. Kelty 221

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

the Original Author, as requested.”
The bulk of our discussion centered around the need for the phrase, ”to the extent 852

practicable.” Glenn asked me, ”How is the original author supposed to monitor all
the possible uses of her name? How will she enforce this clause? Isnt it going to be
difficult to remove the name from every copy?” Glenn was imagining a situation of
strict adherence, one in which the presence of the name on the paper was the
same as the reputation of the individual, regardless of who actually read it. On this
theory, until all traces of the authors name were expunged from each of these
teratomata circulating in the world, there could be no peace, and no rest for the
wronged.
I paused, then gave the kind of sigh meant to imply that I had come to my 853

hard-won understandings of culture through arduous dissertation research: ”It
probably wont need to be strictly enforced in all casesonly in the significant ones.
Scholars tend to respond to each other only in very circumscribed cases, by
writing letters to the editor or by sending responses or rebuttals to the journal that
published the work. It takes a lot of work to really police a reputation, and it differs
from discipline to discipline. Sometimes, drastic action might be needed, usually
not. There is so much misuse and abuse of peoples arguments and work going on
all the time that people only react when they are directly confronted with serious
abuses. And even so, it is only in cases of negative criticism or misuse that people
need respond. When a scholar uses someones work approvingly, but incorrectly, it
is usually considered petulant (at best) to correct them publicly.”
”In short,” I said, leaning back in my chair and acting the part of expert, ”its like, 854

you know, cmonit isnt all law, there are a bunch of, you know, informal rules of
civility and stuff that govern that sort of thing.”
Then Glenn said., ”Oh, okay, well thats when we punt to culture.” 855

When I heard this phrase, I leaned too far back and fell over, joyfully stunned. 856

Glenn had managed to capture what no amount of fieldwork, with however many
subjects, could have. Some combination of American football, a twist of Hobbes or
Holmes, and a lived understanding of what exactly these copyright licenses are
[pg297] meant to achieve gave this phrase a luminosity I usually associate only with
Balinese cock-fights. It encapsulated, almost as a slogan, a very precise
explanation of what Creative Commons had undertaken. It was not a theory Glenn
proposed with this phrase, but a strategy in which a particular, if vague, theory of
culture played a role.
For those unfamiliar, a bit of background on U.S. football may help. When two 857

teams square off on the football field, the offensive team gets four attempts,
called ”downs,” to move the ball either ten yards forward or into the end zone for
a score. The first three downs usually involve one of two strategies: run or pass,
run or pass. On the fourth down, however, the offensive team must either ”go for
it” (run or pass), kick a field goal (if close enough to the end zone), or ”punt” the
ball to the other team. Punting is a somewhat disappointing option, because it
means giving up possession of the ball to the other team, but it has the advantage
of putting the other team as far back on the playing field as possible, thus
decreasing its likelihood of scoring.
To ”punt to culture,” then, suggests that copyright licenses try three times to 858

legally restrict what a user or consumer of a work can make of it. By using the
existing federal intellectual-property laws and the rules of license and contract

Two Bits Christopher M. Kelty 222

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

writing, copyright licenses articulate to people what they can and cannot do with
that work according to law. While the licenses do not (they cannot) force people, in
any tangible sense, to do one thing or another, they can use the language of law
and contract to warn people, and perhaps obliquely, to threaten them. If the
licenses end up silent on a pointif there is no ”score,” to continue the analogythen
its time to punt to culture. Rather than make more law, or call in the police, the
license strategy relies on culture to fill in the gaps with peoples own
understandings of what is right and wrong, beyond the law. It operationalizes a
theory of culture, a theory that emphasizes the sovereignty of nonstate customs
and the diversity of systems of cultural norms. Creative Commons would prefer
that its licenses remain legally minimalist. It would much prefer to assumeindeed,
the licenses implicitly requirethe robust, powerful existence of this multifarious,
hetero-physiognomic, and formidable opponent to the law with neither uniform nor
mascot, hunched at the far end of the field, preparing to, so to speak, clean laws
clock. [pg298]

Creative Commonss ”culture” thus seems to be a somewhat vague mixture of 859

many familiar theories. Culture is an unspecified but finely articulated set of given,
evolved, designed, informal, practiced, habitual, local, social, civil, or historical
norms that are expected to govern the behavior of individuals in the absence of a
state, a court, a king, or a police force, at one of any number of scales. It is not
monolithic (indeed, my self-assured explanation concerned only the norms of
”academia”), but assumes a diversity beyond enumeration. It employs elements of
relativismany culture should be able to trump the legal rules. It is not a hereditary
biological theory, but one that assumes historical contingency and arbitrary
structures.
Certainly, whatever culture is, it is separate from law. Law is, to borrow Sharon 860

Traweeks famous phrase, ”a culture of no culture” in this sense. It is not the
cultural and normative practices of legal scholars, judges, lawyers, legislators, and
lobbyists that determine what laws will look like, but their careful, expert,
noncultural ratiocination. In this sense, punting to culture implies that laws are the
result of human design, whereas culture is the result of human action, but not of
human design. Law is systematic and tractable; culture may have a deep
structure, but it is intractable to human design. It can, however, be channeled and
tracked, nudged or guided, by law.
Thus, Lawrence Lessig, one of the founders of Creative Commons has written 861

extensively about the ”regulation of social meaning,” using cases such as those
involving the use or nonuse of seatbelts or whether or not to allow smoking in
public places. The decision not to wear a seatbelt, for instance, may have much
more to do with the contextual meaning of putting on a seatbelt (dont you trust
the cab driver?) than with either the existence of the seatbelt (or automatic
seatbelts, for that matter) or with laws demanding their use. According to Lessig,
the best law can do in the face of custom is to change the meaning of wearing the
seatbelt: to give the refusal a dishonorable rather than an honorable meaning.
Creative Commons licenses are based on a similar assumption: the law is
relatively powerless in the face of entrenched academic or artistic customs, and so
the best the licenses can do is channel the meaning of sharing and reuse, of
copyright control or infringement. As Glenn explained in the context of a
discussion about a license that would allow music sampling. [pg299]

We anticipate that the phrase ”as appropriate to the medium, genre, and 862

Two Bits Christopher M. Kelty 223

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

market niche” might prompt some anxiety, as it leaves things relatively
undefined. But theres more method here than you might expect: The
definition of ”sampling” or ”collage” varies across different media. Rather than
try to define all possible scenarios (including ones that havent happened
yet)which would have the effect of restricting the types of re-uses to a limited
setwe took the more laissez faire approach.
This sort of deference to community valuesthink of it as ”punting to culture”is 863

very common in everyday business and contract law. The idea is that when
lawyers have trouble defining the specialized terms of certain subcultures,
they should get out of the way and let those subcultures work them out. Its
probably not a surprise Creative Commons likes this sort of notion a lot.346

As in the case of reuse in Connexions, sampling in the music world can imply a 864

number of different, perhaps overlapping, customary meanings of what is
acceptable and what is not. For Connexions, the trick was to differentiate the
cases wherein collaboration should be encouraged from the cases wherein the
legal right to ”sample”to fork or to create a derived workwas the appropriate
course of action. For Creative Commons, the very structure of the licenses
attempts to capture this distinction as such and to allow for individuals to make
determinations about the meaning of sampling themselves.347

At stake, then, is the construction of both technologies and legal licenses that, as 865

Brent and Rich would assert, ”make it easy for users to do the right thing.” The
”right thing,” however, is precisely what goes unstated: the moral and technical
order that guides the design of both licenses and tools. Connexions users are
given tools that facilitate citation, acknowledgment, attribution, and certain kinds
of reuse instead of tools that privilege anonymity or facilitate proliferation or
encourage nonreciprocal collaborations. By the same token, Creative Commons
licenses, while legally binding, are created with the aim of changing norms: they
promote attribution and citation; they promote fair use and clearly designated
uses; they are written to give users flexibility to decide what kinds of things should
be allowed and what kinds shouldnt. Without a doubt, the ”right thing” is right for
some people and not for othersand it is thus political. But the criteria for what is
right are not [pg300] merely political; the criteria are what constitute the affinity of
346Message from the cc-sampling mailing list, Glenn Brown, Subject: BACKGROUND: ”AS
APPROPRIATE TO THE MEDIUM, GENRE, AND MARKET NICHE,” 23 May 2003,
⌜ http://lists.ibiblio.org/pipermail/cc-sampling/2003-May/000004.html ⌟ .
347Sampling offers a particularly clear example of how Creative Commons differs from the existing
practice and infrastructure of music creation and intellectual-property law. The music industry has
actually long recognized the fact of sampling as something musicians do and has attempted to deal
with it by making it an explicit economic practice; the music industry thus encourages sampling by
facilitating the sale between labels and artists of rights to make a sample. Record companies will
negotiate prices, lengths, quality, and quantity of sampling and settle on a price.
This practice is set opposite the assumption, also codified in law, that the public has a right to a fair
use of copyrighted material without payment or permission. Sampling a piece of music might seem
to fall into this category of use, except that one of the tests of fair use is that the use not impact any
existing market for such uses, and the fact that the music industry has effectively created a market
for the buying and selling of samples means that sampling now routinely falls outside the fair uses
codified in the statute, thus removing sampling from the domain of fair use. Creative Commons
licenses, on the other hand, say that owners should be able to designate their material as
”sample-able,” to give permission ahead of time, and by this practice to encourage others to do the
same. They give an ”honorable” meaning to the practice of sampling for free, rather than the
dishonorable one created by the industry. It thus becomes a war over the meaning of norms, in the
law-and-economics language of Creative Commons and its founders.

Two Bits Christopher M. Kelty 224

http://lists.ibiblio.org/pipermail/cc-sampling/2003-May/000004.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

these geeks in the first place, what makes them a recursive public. They see in
these instruments the possibility for the creation of authentic publics whose role is
to stand outside power, outside markets, and to participate in sovereignty, and
through this participation to produce liberty without sacrificing stability.

Conclusion 866

What happens when geeks modulate the practices that make up Free Software? 867

What is the intuition or the cultural significance of Free Software that makes
people want to emulate and modulate it? Creative Commons and Connexions
modulate the practices of Free Software and extend them in new ways. They
change the meaning of shared source code to include shared nonsoftware, and
they try to apply the practices of license writing, coordination, and openness to
new domains. At one level, such an activity is fascinating simply because of what
it reveals: in the case of Connexions, it reveals the problem of determining the
finality of a work. How should the authority, stability, and reliability of knowledge
be assessed when work can be rendered permanently modifiable? It is an activity
that reveals the complexity of the system of authorization and evaluation that has
been built in the past.
The intuition that Connexions and Creative Commons draw from Free Software is 868

an intuition about the authority of knowledge, about a reorientation of knowledge
and power that demands a response. That response needs to be technical and
legal, to be sure, but it also needs to be publica response that defines the meaning
of finality publicly and openly and makes modifiability an irreversible aspect of the
process of stabilizing knowledge. Such a commitment is incompatible with the
provision of stable knowledge by unaccountable private parties, whether
individuals or corporations or governments, or by technical fiat. There must always
remain the possibility that someone can question, change, reuse, and modify
according to their needs.

Two Bits Christopher M. Kelty 225

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Conclusion 869

The Cultural Consequences of Free Software 870

Free Software is changing. In all aspects it looks very different from when I started, 871

and in many ways the Free Software described herein is not the Free Software
readers will encounter if they turn to the Internet to find it. But how could it be
otherwise? If the argument I make in Two Bits is at all correct, then modulation
must constantly be occurring, for experimentation never seeks its own conclusion.
A question remains, though: in changing, does Free Software and its kin preserve
the imagination of moral and technical order that created it? Is the recursive
public something that survives, orders, or makes sense of these changes? Does
Free Software exist for more than its own sake?
In Two Bits I have explored not only the history of Free Software but also the 872

question of where such future changes will have come [pg302] from. I argue for
seeing continuity in certain practices of everyday life precisely because the
Internet and Free Software pervade everyday life to a remarkable, and growing,
degree. Every day, from here to there, new projects and ideas and tools and goals
emerge everywhere out of the practices that I trace through Free Software:
Connexions and Creative Commons, open access, Open Source synthetic biology,
free culture, access to knowledge (a2k), open cola, open movies, science
commons, open business, Open Source yoga, Open Source democracy, open
educational resources, the One Laptop Per Child project, to say nothing of the
proliferation of wiki-everything or the ”peer production” of scientific data or
consumer servicesall new responses to a widely felt reorientation of knowledge
and power.348 How is one to know the difference between all these things? How is
one to understand the cultural significance and consequence of them? Can one
distinguish between projects that promote a form of public sphere that can direct
the actions of our society versus those that favor corporate, individual, or
hierarchical control over decision making?
Often the first response to such emerging projects is to focus on the promises and 873

ideology of the people involved. On the one hand, claiming to be open or free or
public or democratic is something nearly everyone does (including unlikely
candidates such as the defense intelligence agencies of the United States), and
one should therefore be suspicious and critical of all such claims.349 While such
arguments and ideological claims are important, it would be a grave mistake to
focus only on these statements. The ”movement”the ideological, critical, or
promissory aspectis just one component of Free Software and, indeed, the one that
has come last, after the other practices were figured out and made legible,
replicable, and modifiable. On the other hand, it is easy for geeks and Free
Software advocates to denounce emerging projects, to say, ”But that isnt really
Open Source or Free Software.” And while it may be tempting to fix the definition

348See ⌜ http://cnx.org ⌟ , ⌜ http://www.creativecommons.org ⌟ ,
⌜ http://www.earlham.edu/ peters/fos/overview.htm ⌟ , ⌜ http://www.biobricks.org ⌟ , ⌜ http://www.freebeer.org ⌟ ,
⌜ http://freeculture.org ⌟ , ⌜ http://www.cptech.org/a2k ⌟ , [pg348]

⌜ http://www.colawp.com/colas/400/cola467_recipe.html ⌟ , ⌜ http://www.elephantsdream.org ⌟ ,
⌜ http://www.sciencecommons.org ⌟ , ⌜ http://www.plos.org ⌟ , ⌜ http://www.openbusiness.cc ⌟ ,
⌜ http://www.yogaunity.org ⌟ , ⌜ http://osdproject.com ⌟ , ⌜ http://www.hewlett.org/Programs/Education/oer/ ⌟ , and
⌜ http://olpc.com ⌟ .
349See Clive Thompson, ”Open Source Spying,” New York Times Magazine, 3 December 2006, 54.

Two Bits Christopher M. Kelty 226

http://cnx.org
http://www.creativecommons.org
http://www.earlham.edu/~peters/fos/overview.htm
http://www.biobricks.org
http://www.freebeer.org
http://freeculture.org
http://www.cptech.org/a2k
http://www.colawp.com/colas/400/cola467_recipe.html
http://www.elephantsdream.org
http://www.sciencecommons.org
http://www.plos.org
http://www.openbusiness.cc
http://www.yogaunity.org
http://osdproject.com
http://www.hewlett.org/Programs/Education/oer/
http://olpc.com
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

of Free Software once and for all in order to ensure a clear dividing line between
the true sons and the carpetbaggers, to do so would reduce Free Software to mere
repetition without difference, would sacrifice its most powerful and distinctive
attribute: its responsive, emergent, public character.
But what questions should one ask? Where should scholars or curious onlookers 874

focus their attention in order to see whether or not a recursive public is at work?
Many of these questions are simple, [pg303] practical ones: are software and
networks involved at any level? Do the participants claim to understand Free
Software or Open Source, either in their details or as an inspiration? Is
intellectual-property law a key problem? Are participants trying to coordinate each
other through the Internet, and are they trying to take advantage of voluntary,
self-directed contributions of some kind? More specifically, are participants
modulating one of these practices? Are they thinking about something in terms of
source code, or source and binary? Are they changing or creating new forms of
licenses, contracts, or privately ordered legal arrangements? Are they
experimenting with forms of coordinating the voluntary actions of large numbers
of unevenly distributed people? Are the people who are contributing aware of or
actively pursuing questions of ideology, distinction, movement, or opposition? Are
these practices recognized as something that creates the possibility for affinity,
rather than simply arcane ”technical” practices that are too complex to
understand or appreciate?
In the last few years, talk of ”social software” or ”Web 2.0” has dominated the 875

circuit of geek and entrepreneur conferences and discussions: Wikipedia, MySpace,
Flickr, and YouTube, for example. For instance, there are scores and scores of
”social” music sites, with collaborative rating, music sharing, music discovery, and
so forth. Many of these directly use or take inspiration from Free Software. For all
of them, intellectual property is a central and dominating concern. Key to their
novelty is the leveraging and coordinating of massive numbers of people along
restricted lines (i.e., music preferences that guide music discovery). Some even
advocate or lobby for free(er) access to digital music. But they are not (yet) what I
would identify as recursive publics: most of them are commercial entities whose
structure and technical specifications are closely guarded and not open to
modification. While some such entities may deal in freely licensed content (for
instance, Creative Commons-licensed music), few are interested in allowing
strangers to participate in, modulate, or modify the system as such; they are
interested in allowing users to become consumers in more and more sophisticated
ways, and not necessarily in facilitating a public culture of music. They want
information and knowledge to be free, to be sure, but not necessarily the
infrastructure that makes that information available and knowledge possible. Such
entities lack the ”recursive” commitment. [pg304]

By contrast, some corners of the open-access movement are more likely to meet 876

this criteria. As the appellation suggests, participants see it as a movement, not a
corporate or state entity, a movement founded on practices of copyleft and the
modulation of Free Software licensing ideas. The use of scientific data and the
tools for making sense of open access are very often at the heart of controversy in
science (a point often reiterated by science and technology studies), and so there
is often an argument about not only the availability of data but its reuse,
modification, and modulation as well. Projects like the BioBricks Foundation
(biobricks.org) and new organizations like the Public Library of Science (plos.org)

Two Bits Christopher M. Kelty 227

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

are committed to both availability and certain forms of collective modification. The
commitment to becoming a recursive public, however, raises unprecedented
issues about the nature of quality, reliability, and finality of scientific data and
resultsquestions that will reverberate throughout the sciences as a result.
Farther afield, questions of ”traditional heritage” claims, the compulsory licensing 877

of pharmaceuticals, or new forms of ”crowdsourcing” in labor markets are also
open to analysis in the terms I offer in Two Bits.350 Virtual worlds like Second Life,
”a 3D digital world imagined, created, and owned by its residents,” are
increasingly laboratories for precisely the kinds of questions raised here: such
worlds are far less virtual than most people realize, and the experiments
conducted there far more likely to migrate into the so-called real world before we
know itincluding both economic and democratic experiments.351 How far will
Second Life go in facilitating a recursive public sphere? Can it survive both as a
corporation and as a ”world”? And of course, there is the question of the
”blogosphere” as a public sphere, as a space of opinion and discussion that is
radically open to the voices of massive numbers of people. Blogging gives the lie
to conventional journalisms self-image as the public sphere, but it is by no means
immune to the same kinds of problematic dynamics and polarizations, no more
”rational-critical” than FOX News, and yet . . .
Such examples should indicate the degree to which Two Bits is focused on a much 878

longer time span than simply the last couple of years and on much broader issues
of political legitimacy and cultural change. Rather than offer immediate policy
prescriptions or seek to change the way people think about an issue, I have
approached [pg305] Two Bits as a work of history and anthropology, making it less
immediately applicable in the hopes that it is more lastingly usable. The stories I
have told reach back at least forty years, if not longer. While it is clear that the
Internet as most people know it is only ten to fifteen years old, it has been ”in
preparation” since at least the late 1950s. Students in my classesespecially hip
geeks deep in Free Software apprenticeshipare bewildered to learn that the
arguments and usable pasts they are rehearsing are refinements and riffs on
stories that are as old or older than their parents. This deeper stability is where the
cultural significance of Free Software lies: what difference does Free Software
today introduce with respect to knowledge and power yesterday?
Free Software is a response to a problem, in much the same way that the Royal 879

Society in the sixteenth century, the emergence of a publishing industry in the
eighteenth century, and the institutions of the public sphere in the eighteenth and
nineteenth centuries were responses. They responded to the collective challenge
of creating regimes of governance that requiredand encouragedreliable empirical
knowledge as a basis for their political legitimacy. Such political legitimacy is not
an eternal or theoretical problem; it is a problem of constant real-world practice in
creating the infrastructures by which individuals come to inhabit and understand
their own governance, whether by states, corporations, or machines. If power
seeks consent of the governedand especially the consent of the democratic,
self-governing kind that has become the global dominant ideal since the

350See especially Christen, ”Tracking Properness” and ”Gone Digital”; Brown, Who Owns Native
Culture? and ”Heritage as Property.” Crowdsourcing fits into other novel forms of labor arrangements,
ranging from conventional outsourcing and off-shoring to newer forms of bodyshopping and ”virtual
migration” (see Aneesh, Virtual Migration; Xiang, ”Global Bodyshopping”).
351Golub, ”Copyright and Taboo”; Dibbell, Play Money.

Two Bits Christopher M. Kelty 228

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

seventeenth centuryit must also seek to ensure the stability and reliability of the
knowledge on which that consent is propped.
Debates about the nature and history of publics and public spheres have served as 880

one of the main arenas for this kind of questioning, but, as I hope I have shown
here, it is a question not only of public spheres but of practices, technologies, laws,
and movements, of going concerns which undergo modulation and
experimentation in accord with a social imagination of order both moral and
technical. ”Recursive public” as a concept is not meant to replace that of public
sphere. I intend neither for actors nor really for many scholars to find it generally
applicable. I would not want to see it suddenly discovered everywhere, but
principally in tracking the transformation, proliferation, and differentiation of Free
Software and its derivatives. [pg306]

Several threads from the three parts of Two Bits can now be tied together. The 881

detailed descriptions of Free Software and its modulations should make clear that
(1) the reason the Internet looks the way it does is due to the work of figuring out
Free Software, both before and after it was recognized as such; (2) neither the
Internet nor the computer is the cause of a reorientation of knowledge and power,
but both are tools that render possible modulations of settled practices,
modulations that reveal a much older problem regarding the legitimacy of the
means of circulation and production of knowledge; (3) Free Software is not an
ethical stance, but a practical response to the revelation of these older problems;
and (4) the best way to understand this response is to see it as a kind of public
sphere, a recursive public that is specific to the technical and moral imaginations
of order in the contemporary world of geeks.
It is possible now to return to the practical and political meaning of the ”singularity” 882

of the Internet, that is, to the fact that there is only one Internet. This does not
mean that there are no other networks, but only that the Internet is a singular
entity and not an instance of a general type. How is it that the Internet is open in
the same way to everyone, whether an individual or a corporate or a national
entity? How has it become extensible (and, by extension, defensible) by and to
everyone, regardless of their identity, locale, context, or degree of power?
The singularity of the Internet is both an ontological and an epistemological fact; it 883

is a feature of the Internets technical configurations and modes of ordering the
actions of humans and machines by protocols and software. But it is also a feature
of the technical and moral imaginations of the people who build, manage, inhabit,
and expand the Internet. Ontologically, the creation and dissemination of
standardized protocols, and novel standard-setting processes are at the heart of
the story. In the case of the Internet, differences in standards-setting processes
are revealed clearly in the form of the famous Request for Comments system of
creating, distributing, and modifying Internet protocols. The RFC system, just as
much as the Geneva-based International Organization for Standards, reveal the
fault lines of international legitimacy in complex societies dependent on networks,
software, and other high-tech forms of knowledge production, organization, and
governance. The legitimacy of standards has massive significance for the abilities
of individual actors to participate in their own recursive publics, whether they [pg307]

be publics that address software and networks or those that address education
and development. But like the relationship between ”law on the books” and ”law
in action,” standards depend on the coordinated action and order of human
practices.

Two Bits Christopher M. Kelty 229

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Whats more, the seemingly obvious line between a legitimate standard and a 884

marketable product based on these standards causes nothing but trouble. The
case of open systems in the 1980s high-end computer industry demonstrates how
the logic of standardization is not at all clearly distinguished from the logic of the
market. The open-systems battles resulted in novel forms of
cooperation-within-competition that sought both standardization and competitive
advantage at the same time. Open systems was an attempt to achieve a kind of
”singularity,” not only for a network but for a market infrastructure as well. Open
systems sought ways to reform technologies and markets in tandem. What it
ignored was the legal structure of intellectual property. The failure of open
systems reveals the centrality of the moral and technical order of intellectual
propertyto both technology and marketsand shows how a reliance on this
imagination of order literally renders impossible the standardization of singular
market infrastructure. By contrast, the success of the Internet as a market
infrastructure and as a singular entity comes in part because of the recognition of
the limitations of the intellectual-property systemand Free Software in the 1990s
was the main experimental arena for trying out alternatives.
The singularity of the Internet rests in turn on a counterintuitive multiplicity: the 885

multiplicity of the UNIX operating system and its thousands of versions and
imitations and reimplementations. UNIX is a great example of how novel,
unexpected kinds of order can emerge from high-tech practices. UNIX is neither an
academic (gift) nor a market phenomenon; it is a hybrid model of sharing that
emerged from a very unusual technical and legal context. UNIX demonstrates how
structured practices of sharing produce their own kind of order. Contrary to the
current scholarly consensus that Free Software and its derivatives are a kind of
”shadow economy” (a ”sharing” economy, a ”peer production” economy, a
”noncommercial” economy), UNIX was never entirely outside of the mainstream
market. The meanings of sharing, distribution, and profitability are related to the
specific technical, legal, and organizational context. Because AT&T was prevented
from commercializing UNIX, because UNIX users were keen to expand and [pg308]

adapt it for their own uses, and because its developers were keen to encourage
and assist in such adaptations, UNIX proliferated and differentiated in ways that
few commercial products could have. But it was never ”free” in any sense. Rather,
in combination with open systems, it set the stage for what ”free” could come to
mean in the 1980s and 1990s. It was a nascent recursive public, confronting the
technical and legal challenges that would come to define the practices of Free
Software. To suggest that it represents some kind of ”outside” to a functioning
economic market based in money is to misperceive how transformative of markets
UNIX and the Internet (and Free Software) have been. They have initiated an
imagination of moral and technical order that is not at all opposed to ideologies of
market-based governance. Indeed, if anything, what UNIX and Free Software
represent is an imagination of how to change an entire market-based governance
structurenot just specific markets in thingsto include a form of public sphere, a
check on the power of existing authority.
UNIX and Open Systems should thus be seen as early stages of a collective 886

technical experiment in transforming our imaginations of order, especially of the
moral order of publics, markets, and self-governing peoples. The continuities and
the gradualness of the change are more apparent in these events than any sudden
rupture or discontinuity that the ”invention of the Internet” or the passing of new

Two Bits Christopher M. Kelty 230

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

intellectual-property laws might suggest. The ”reorientation of knowledge and
power” is more dance than earthquake; it is stratified in time, complex in its
movements, and takes an experimental form whose concrete traces are the
networks, infrastructures, machines, laws, and standards left in the wake of the
experiments.
Availability, reusability, and modifiability are at the heart of this reorientation. The 887

experiments of UNIX and open systems would have come to nothing if they had
not also prompted a concurrent experimentation with intellectual-property law, of
which the copyleft license is the central and key variable. Richard Stallmans
creation of GNU EMACS and the controversy over propriety that it engendered was
in many ways an attempt to deal with exactly the same problem that UNIX
vendors and open-systems advocates faced: how to build extensibility into the
software marketexcept that Stallman never saw it as a market. For him, software
was and is part of the human itself, constitutive of our very freedom and, hence,
inalienable. Extending software, through collective mutual [pg309] aid, is thus
tantamount to vitality, progress, and self-actualization. But even for those who
insist on seeing software as mere product, the problem of extensibility remains.
Standardization, standards processes, and market entry all appear as political
problems as soon as extensibility is deniedand thus the legal solution represented
by copyleft appears as an option, even though it raises new and troubling
questions about the nature of competition and profitability.
New questions about competition and profitability have emerged from the massive 888

proliferation of hybrid commercial and academic forms, forms that bring with them
different traditions of sharing, credit, reputation, control, creation, and
dissemination of knowledge and products that require it. The new economic
demands on the universityall too easily labeled neoliberalization or
corporatizationmirror changing demands on industry that it come to look more like
universities, that is, that it give away more, circulate more, and cooperate more.
The development of UNIX, in its details, is a symptom of these changes, and the
success of Free Software is an unambiguous witness to them.
The proliferation of hybrid commercial-academic forms in an era of modifiability 889

and reusability, among the debris of standards, standards processes, and new
experiments in intellectual property, results in a playing field with a thousand
different games, all of which revolve around renewed experimentation with
coordination, collaboration, adaptability, design, evolution, gaming, playing,
worlds, and worlding. These games are indicative of the triumph of the American
love of entrepreneurialism and experimentalism; they relinquish the ideals of
planning and hierarchy almost absolutely in favor of a kind of embedded,
technically and legally complex anarchism. It is here that the idea of a public
reemerges: the ambivalence between relinquishing control absolutely and
absolute distrust of government by the few. A powerful public is a response, and a
solution, so long as it remains fundamentally independent of control by the few.
Hence, a commitment, widespread and growing, to a recursive public, an attempt
to maintain and extend the kinds of independent, authentic, autotelic public
spheres that people encounter when they come to an understanding of how Free
Software and the Internet have evolved.
The open-access movement, and examples like Connexions, are attempts at 890

maintaining such publics. Some are conceived as bulwarks [pg310] against
encroaching corporatization, while others see themselves as novel and innovative,

Two Bits Christopher M. Kelty 231

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

but most share some of the practices hashed out in the evolution of Free Software
and the Internet. In terms of scholarly publishing and open access, the movement
has reignited discussions of ethics, norms, and method. The Mertonian ideals are
in place once more, this time less as facts of scientific method than as goals. The
problem of stabilizing collective knowledge has moved from being an inherent
feature of science to being a problem that needs our attention. The reorientation
of knowledge and power and the proliferation of hybrid commercial-academic
entities in an era of massive dependence on scientific knowledge and information
leads to a question about the stabilization of that knowledge.
Understanding how Free Software works and how it has developed along with the 891

Internet and certain practices of legal and cultural critique may be essential to
understanding the reliable foundation of knowledge production and circulation on
which we still seek to ground legitimate forms of governance. Without Free
Software, the only response to the continuing forms of excess we associate with
illegitimate, unaccountable, unjust forms of governance might just be mute
cynicism. With it, we are in possession of a range of practical tools, structured
responses and clever ways of working through our complexity toward the promises
of a shared imagination of legitimate and just governance. There is no doubt room
for critiqueand many scholars will demand itbut scholarly critique will have to
learn how to sit, easily or uneasily, with Free Software as critique. Free Software
can also exclude, just as any public or public sphere can, but this is not, I think,
cause for resistance, but cause for joining. The alternative would be to create no
new rules, no new practices, no new proceduresthat is, to have what we already
have. Free Software does not belong to geeks, and it is not the only form of
becoming public, but it is one that will have a profound structuring effect on any
forms that follow.

Two Bits Christopher M. Kelty 232

https://twobits.net
https://kelty.org/

Acknowledgement 892

Two Bits Christopher M. Kelty 233

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Acknowledgment 893

Parts of this book have been published elsewhere. A much earlier version of 894

chapter 1 was published as ”Geeks, Social Imaginaries and Recursive Publics,”
Cultural Anthropology 20.2 (summer 2005); chapter 6 as ”The EMACS
Controversy,” in Mario Biagioli, Martha Woodmansee, and Peter Jaszi, eds.,
Contexts of Invention (forthcoming); and parts of chapter 9 as ”Punt to Culture,”
Anthropological Quarterly 77.3.

Two Bits Christopher M. Kelty 234

https://twobits.net
https://kelty.org/

Library of Congress 895

Two Bits Christopher M. Kelty 235

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Library of Congress Catalog 896

christopher m. kelty 897

is an assistant professor of anthropology
at Rice University.

Library of Congress Cataloging-in-Publication Data
Kelty, Christopher M.

Two bits :
the cultural significance of free software / Christopher M. Kelty. p. cm. –(Experimental futures)

Includes bibliographical references and index.
ISBN-13: 978-0-8223-4242-7 (cloth :

alk. paper)
ISBN-13: 978-0-8223-4264-9 (pbk. :

alk. paper)
1. Information society. 2. Open source softwareSocial aspects. I. Title.
HM851K45 2008
303.48’33dc22 2007049447

Endnotes

Two Bits Christopher M. Kelty 236

https://twobits.net
https://kelty.org/

Bibliography 899

Janet Abbate, Brian Kahin "Standards Policy for Information Infrastructure", 1995, 900

MIT Press, Cambridge, Mass..
Janet Abbate "Inventing the Internet", 1999, MIT Press, Cambridge, Mass. 901

Harold Abelson, Gerald J. Sussman "The Structure and Interpretation of Computer 902

Programs", 1985, MIT Press, Cambridge, Mass..
Atsushi Akera "Volunteerism and the Fruits of Collaboration: The IBM User Group 903

SHARE", Technology and Culture, 2001-10, 710-736.
Atsushi Akera, Frederik Nebeker "From 0 to 1: An Authoritative History of Modern 904

Computing", 2002, Oxford University Press, New York.
Benedict Anderson "Imagined Communities: Reflections on the Origins and Spread 905

of Nationalism", 1983, Verso, London.
Jane Anderson, Kathy Bowery "The Imaginary Politics of Access to Knowledge", 906

2006-04, 20-23, Cleveland, Ohio.
A. Aneesh "Virtual Migration: The Programming of Globalization", 2006, Duke 907

University Press, Durham, N.C..
Hannah Arendt "The Human Condition", 1958, University of Chicago Press. 908

Jack Balkin "Cultural Software: A Theory of Ideology", 1998, Yale University Press„ 909

New Haven, Conn..
Richard Baraniuk, W. Joseph King "Connexions: Sharing Knowledge and Building 910

Communities", Sloan-C Review: Perspectives in Quality Online Education, 4.9,
2005-09, [http://www.aln.org/publications/view/v4n9/coverv4n9.htm].

Richard Barbrook, Andy Cameron "The California Ideology", Science as Culture, 26, 911

1996, 44-72.
Thierry Bardini "Bootstrapping: Douglas Engelbart, Co-evolution and the Origins of 912

Personal Computing", 2001, Stanford University Press, Stanford, Calif..
John Perry Barlow "The Economy of Ideas", 2.3, 1994-03. 913

Andrew Barry "Political Machines: Governing a Technological Society", 2001, 914

Athlone Press„ London.
Deborah Battaglia "For Those Who Are Not Afraid of the Future: Raëlian Clonehood 915

in the Public Sphere", E.T. Culture: Anthropology in OuterspacesDeborah
Battaglia, 2005, 149-79, Duke University Press, Durham, N.C..

Yochai Benkler "Coases Penguin, or Linux and the Nature of the Firm", Yale Law 916

Journal, 112.3, 2002, 369-446.
Yochai Benkler "Sharing Nicely: On Shareable Goods and the Emergence of Sharing 917

as a Modality of Economic Production", Yale Law Journal, 114.2, 2004, 273-358.
Yochai Benkler "The Wealth of Networks: How Social Production Transforms 918

Markets and Freedom", 2006, Yale University Press, New Haven, Conn..

Two Bits Christopher M. Kelty 237

https://twobits.net
https://kelty.org/

Thomas J. Jr. Bergin, Richard G. Jr. Gibson "History of Programming Languages 2", 919

1996, Association for Computing Machinery Press, New York.
Tim Berners-Lee, Mark Fischetti "Weaving the Web: The Original Design and 920

Ultimate Destiny of the World Wide Web by Its Inventor", 1999, Harper San
Francisco, San Francisco.

Mario. Biagioli "Galileo, Courtier: The Practice of Science in the Culture of 921

Absolutism", 1993, University of Chicago Press, Chicago.
Pablo Boczkowski "Digitizing the News: Innovation in Online Newspapers", 2004, 922

MIT Press, Cambridge, Mass..
David Bollier "Silent Theft: The Private Plunder of Our Common Wealth", 2002, 923

Routledge, New York.
George Bornstein, Ralph G. Williams "Palimpsest: Editorial Theory in the 924

Humanities", 1993, University of Michigan Press, Ann Arbor.
Paulina Borsook "Cyberselfish: A Critical Romp through the Terribly Libertarian 925

Culture of High Tech", 2000, Public Affairs, New York.
Geoffrey C. Bowker, Susan Leigh Star "Sorting Things Out: Classification and Its 926

Consequences", 1999, MIT Press, Cambridge, Mass..
Geoffrey Bowker "Memory Practices in the Sciences", 2006, MIT Press, Cambridge, 927

Mass..
James Boyle "A Politics of Intellectual Property: Environmentalism for the Net?", 928

Duke Law Journal, 47.1, 1997-10, 87-116.
James Boyle "Conservatives and Intellectual Property", Engage, 1, 2000-04, 929

[http://www.law.duke.edu/boylesite/Federalist.htm].
James Boyle "The Second Enclosure Movement and the Construction of the Public 930

Domain", 66.1-2 (winter-spring), ”The Public Domain”James Boyle, 2003,
33-74.

James Boyle "Mertonianism Unbound? Imagining Free, Decentralized Access to 931

Most Cultural and Scientific Material", Understanding Knowledge as a Common:
From Theory to PracticeCharlotte Hess, Elinor Ostrom, 2006, 123-44, MIT Press,
Cambridge, Mass., [http://www.james-boyle.com/mertonianism.pdf].

Gerald. Brock "The Second Information Revolution", 2003, Harvard University 932

Press, Cambridge, Mass..
Frederick Brooks "The Mythical Man-month: Essays on Software Engineering", 933

1975, Addison-Wesley, Reading, Mass.
Michael Brown "Who Owns Native Culture?", 2003, Harvard University Press, 934

Cambridge, Mass..
Michael Brown "Heritage as Property", Property in Question: Value Transformation 935

in the Global EconomyKatherine Verdery, Caroline Humphrey, 2004, 49-68,
Berg, Oxford.

Craig Calhoun "Habermas and the Public Sphere", 1992, MIT Press, Cambridge, 936

Mass..

Two Bits Christopher M. Kelty 238

https://twobits.net
https://kelty.org/

Michel Callon "Some Elements of a Sociology of Translation: Domestication of the 937

Scallops and the Fishermen of St Brieuc Bay", Power, Action and Belief: A New
Sociology of KnowledgeJohn Law, 1986, 196-233, Routledge and Kegan Paul,
London.

Michel Callon "The Laws of the Markets", 1998, Blackwell, London. 938

Michel Callon, Cécile Méadel, Vololona Rabeharisoa "The Economy of Qualities", 939

Economy and Society, 31.2, 2002-05, 194-217.
Martin Campbell-Kelly, William Aspray "Computer: A History of the Information 940

Machine", 1996, Basic Books, New York.
Martin Campbell-Kelly "From Airline Reservations to Sonic the Hedgehog: A History 941

of the Software Industry", 2003, MIT Press, Cambridge, Mass..
Paul D. Carrington, Erika King "Law and the Wisconsin Idea", Journal of Legal 942

Education, 47, 1997, 297.
Manuel Castells "The Rise of the Network Society", 1996, Blackwell, Cambridge, 943

Mass..
Manuel Castells "The Internet Galaxy: Reflections on the Internet, Business and 944

Society", 2001, Oxford University Press, New York.
Cornelius Castoriadis "The Imaginary Institution of Society", 1987, MIT Press, 945

Cambridge, Mass..
Vinton G. Cerf, Robert Kahn "A Protocol for Packet Network Interconnection", IEEE 946

Transactions on Communications, 22.5, 1974-05, 637-48.
Owen Chadwick "The Early Reformation on the Continent", 2001, Oxford University 947

Press, Oxford.
Anita Chan "Coding Free Software, Coding Free States: Free Software Legislation 948

and the Politics of Code in Peru", Anthropological Quarterly, 77.3 (summer),
2004, 531-45.

Roger Chartier "The Cultural Uses of Print in Early Modern France", 1988, Princeton 949

University Press, Princeton.
Roger Chartier "The Order of Books: Readers, Authors, and Libraries in Europe 950

between the Fourteenth and Eighteenth Centuries", 1994, Stanford University
Press, Stanford, Calif..

Partha Chatterjee "A Response to Taylors Modes of Civil Society.", Public Culture, 951

3.1, 1990, 120-21.
Kim Christen "Gone Digital: Aboriginal Remix and the Cultural Commons", 952

International Journal of Cultural Property, 12, 2005-08, 315-45.
Kim Christen "Tracking Properness: Repackaging Culture in a Remote Australian 953

Town", Cultural Anthropology, 21.3, 2006-08, 416-46.
Clayton Christensen "The Innovators Dilemma: When New Technologies Cause 954

Great Firms to Fail", 1997, Harvard Business School Press, Boston.
Wendy Hui Kyong Chun "Control and Freedom: Power and Paranoia in the Age of 955

Fiber Optics", 2006, MIT Press, Cambridge, Mass..

Two Bits Christopher M. Kelty 239

https://twobits.net
https://kelty.org/

David Clark "The Design Philosophy of the DARPA Internet Protocols 1988", 956

Computer Communications: Architectures, Protocols, and StandardsWilliam
Stallings, 1992, 54-62, IEEE Computer Society Press, Los Alamitos, Calif..

Julie Cohen, Lydia Pallas Loren, Ruth Gana Okediji, Maureen ORourke "Copyright in 957

a Global Information Economy", 2001, Aspen Law and Business Publishers,
Aspen, Colo..

E. Gabriella Coleman "The Political Agnosticism of Free and Open Source Software 958

and the Inadvertent Politics of Contrast", Anthropological Quarterly, 77.3
(summer), 2004, 507-19.

E. Gabriella Coleman "The Social Construction of Freedom: Hackers, Ethics and the 959

Liberal Tradition", 2005, University of Chicago.
Jean Comaroff, John Comaroff "Ethnography and the Historical Imagination", 1992, 960

Westview, Boulder, Colo..
Douglas E. Comer "Operating System Design", 1984, Prentice Hall, Englewood 961

Cliffs, N.J..
Douglas E. Comer "Internetworking with TCP/IP", 2000, Prentice Hall, Upper Saddle 962

River, N.J..
Rosemary Coombe, Andrew Herman "Rhetorical Virtues: Property, Speech, and the 963

Commons on the World-Wide Web", Anthropological Quarterly, 77.3 (summer),
2004, 559-574.

Rosemary Coombe, Andrew Herman "Your Second Life? Goodwill and the 964

Performativity of Intellectual Property in Online Digital Gaming", Cultural
Studies, 20.2-3 (March-May), 2006-03, 184-210.

Patricia Crain "The Story of A: The Alphabetization of America from The New 965

England Primer to The Scarlet Letter", 2000, Stanford University Press,
Stanford, Calif..

Terry A. Critchley, K. C. Batty "Open Systems: The Reality", 1993, Prentice Hall, 966

Englewood Cliffs, N.J..
Charis Cussins "Ontological Choreography: Agency through Objectification in 967

Infertility Clinics", Social Studies of Science, 26.3, 1996, 575-610.
Lorraine Daston "Biographies of Scientific Objects", 2000, University of Chicago 968

Press, Chicago.
Martin Davis "Engines of Logic: Mathematicians and the Origin of the Computer", 969

2001, W. W. Norton.
Manuel DeLanda "A Thousand Years of Non-linear History", 1997, Zone Books, New 970

York.
Manuel DeLanda "Open Source: A Movement in Search of a Philosophy", Paper 971

presented to the Institute for Advanced Study, 2001, Princeton, N.J.,
[http://www.cddc.vt.edu/host/delanda/pages/opensource.htm].

Manuel DeLanda "Intensive Science and Virtual Philosophy", 2002, Continuum 972

Press, London.
Jodi Dean "Why the Net Is Not a Public Sphere", Constellations, 10.1, 2003-03. 973

Two Bits Christopher M. Kelty 240

https://twobits.net
https://kelty.org/

John Dewey "The Public and Its Problems", 1927, Sage Books / Swallow Press, 974

Chicago.
John Dewey "Liberalism and Social Action", 1935, G. P. Putnams Sons, New York. 975

John Dewey "Freedom and Culture", 1939, Prometheus Books, Amherst, N.Y.. 976

Paul DiMaggio, Esther Hargittai, C. Celeste, S. Shafer "From Unequal Access to 977

Differentiated Use: A Literature Review and Agenda for Research on Digital
Inequality", Social InequalityKathryn Neckerman, 2004, 355-400, Russell Sage
Foundation, New York.

Julian Dibbell "A Rape in Cyberspace", Village Voice, 38.51, 1993-12. 978

Julian Dibbell "Play Money: Or, How I Quit My Day Job and Made Millions Trading 979

Virtual Loot", 2006., Basic Books, New York.
Chris, et al. Dibona "Open Sources: Voices from the Open Source Revolution", 980

1999, OReilly Press, Sebastopol, Calif..
Gary L. Downey "The Machine in Me: An Anthropologist Sits among Computer 981

Engineers", 1998, Routledge, London.
Richard Doyle "Wetwares: Experiments in Postvital Living", 2003, University of 982

Minnesota Press, Minneapolis.
William Drake "The Internet Religious War", Telecommunications Policy, 17, 983

1993-12, 643-49.
Hubert Dreyfus "On the Internet", 2001, Routledge, London. 984

Joseph Dumit "Picturing Personhood: Brain Scans and Biomedical Identity", 2004, 985

Princeton University Press, Princeton.
Terry Eagleton "The Ideology of the Aesthetic", 1990, Blackwell, Cambridge, Mass.. 986

Terry Eagleton "Ideology: An Introduction", 1991, Verso Books, London. 987

Paul N. Edwards "The Closed World: Computers and the Politics of Discourse in the 988

Cold War", 1996, MIT Press, Cambridge, Mass..
Paul N. Edwards "Infrastructure and Modernity: Force, Time, and Social 989

Organization in the History of Sociotechnical Systems", Modernity and
TechnologyThomas Misa, Philip Brey, Andrew Feenberg, 2003, 185-225, MIT
Press, Cambridge, Mass..

Elizabeth Eisenstein "The Printing Press as an Agent of Change: Communications 990

and Cultural Transformations in Early Modern Europe", 1979, Cambridge
University Press, Cambridge.

W. Faulkner "Dualisms, Hierarchies and Gender in Engineering", Social Studies of 991

Science, 30.5, 2000, 759-92.
Lucien Febvre, Henri-Jean Martin "The Coming of the Book: The Impact of Printing 992

1450-1800", 1958, Verso, London.
Joseph Feller, Brian Fitzgerald, Scott A. Hissam, Karim R. Lakhani "Perspectives on 993

Free and Open Source Software", 2005, MIT Press, Cambridge, Mass..
Paul Feyerabend "Against Method", 1993, Verso Books, London. 994

Two Bits Christopher M. Kelty 241

https://twobits.net
https://kelty.org/

Roy T. Fielding "Shared Leadership in the Apache Project", Communications of the 995

ACM, 42.4, 1999-04, 42-43.
Franklin Fischer, M. Folded "Spindled, and Mutilated", 1983, MIT Press, Cambridge, 996

Mass..
Michael M. J. Fischer "Worlding Cyberspace", Critical Anthropology NowGeorge 997

Marcus, 1999, 245-304, School for Advanced Research Press, Santa Fe, N.M..
Michael M. J. Fischer "Emergent Forms of Life and the Anthropological Voice", 2003, 998

Duke University Press, Durham, N.C..
Michael M. J. Fischer "Culture and Cultural Analysis as Experimental Systems", 999

Cultural Anthropology, 22.1, 2007-02, 1-65.
Patrice Flichy "The Internet Imaginaire", 2007, MIT Press, Cambridge, Mass.. 1000

Kim Fortun "Advocating Bhopal: Environmentalism, Disaster, New Global Orders", 1001

2003, University of Chicago Press, Chicago.
Kim Fortun, Mike Fortun "Scientific Imaginaries and Ethical Plateaus in 1002

Contemporary U.S. Toxicology", American Anthropologist, 107.1, 2005, 43-54.
Kim Fortun "Figuring Out Ethnography", Fieldwork Isnt What It Used to BeGeorge 1003

Marcus, James Faubion, , University of Chicago Press, Chicago.
Michel Foucault "What Is an Author?", The Foucault ReaderP. Rabinow, 1984, 1004

101-20, Pantheon Books, New York.
Michel Foucault "What Is Enlightenment?", EthicsPaul Rabinow, 1997, 303-17, New 1005

Press, New York.
Michel Foucault "La naissance de la biopolitique: Cours au Collège de France 1006

(1978-1979)", 2004, Gallimard / Le Seuil, Paris.
Carla Freeman "High Tech and High Heels in the Global Economy", 2000, Duke 1007

University Press, Durham, N.C..
Jo Freeman, Victoria Johnson "Waves of Protest: Social Movements since the 1008

Sixties", 1999, Rowman and Littlefield, Lanham, Md..
Peter Galison "How Experiments End", 1987, University of Chicago Press, Chicago. 1009

Peter Galison "Image and Logic: The Material Culture of Microphysics", 1997, 1010

University of Chicago Press, Chicago.
Alexander Galloway "Protocol, or How Control Exists after Decentralization", 2004, 1011

MIT Press, Cambridge, Mass..
Mike Gancarz "The Unix Philosophy", 1994, Digital Press, Boston. 1012

Mike Gancarz "Linux and the UNIX Philosophy", 2003, Digital Press, Boston. 1013

Dilip Gaonkar "Toward New Imaginaries: An Introduction", Public Culture, 14.1, 1014

2002, 1-19.
Clifford Geertz "Ideology as a Cultural System", The Interpretation of Cultures, 1015

1973, 193-233, Basic Books, New York.
Luther P. Gerlach, Virginia H. Hine "People, Power, Change: Movements of Social 1016

Transformation", 1970, Bobbs-Merrill, Indianapolis.

Two Bits Christopher M. Kelty 242

https://twobits.net
https://kelty.org/

Rishab Ayer Ghosh "Cooking Pot Markets: An Economic Model for the Trade in Free 1017

Goods", First Monday, 3.3, 1998,
[http://www.firstmonday.org/issues/issue3_3/ghosh/].

Tarleton Gillespie "Engineering a Principle: End to End in the Design of the 1018

Internet", Social Studies of Science, 36.3, 2006, 427-57.
Alex Golub "Copyright and Taboo", Anthropological Quarterly, 77.3, 2004, 521-30. 1019

Pamela Gray "Open Systems: A Business Strategy for the 1990s", 1991, 1020

McGraw-Hill, London.
Ellen Green, Allison Adam "Virtual Gender: Technology, Consumption and Identity", 1021

2001, Routledge, London.
Ian Green "The Christians ABCs: Catechisms and Catechizing in England 1022

c1530-1740", 1996, Oxford University Press, Oxford.
Ian Green "Print and Protestantism in Early Modern England", 2000, Oxford 1023

University Press, Oxford.
Sarah Green, Penny Harvey, Hannah Knox "Scales of Place and Networks: An 1024

Ethnography of the Imperative to Connect through Information and
Communication Technologies", 46.5, 2005-12, 805-26, Current Anthropology.

David Alan Grier, Mary Campbell "A Social History of Bitnet and Listserv 1025

1985-1991", IEEE Annals of the History of Computing (April-June), 2000-04,
32-41.

David Alan Grier "When Computers Were Human", 2005, Princeton University 1026

Press, Princeton.
Keith Grint, Rosalind Gill "The Gender-Technology Relation: Contemporary Theory 1027

and Research", 1995, Taylor and Francis, London.
Jürgen Habermas "The Structural Transformation of the Public Sphere: An Inquiry 1028

into a Category of Bourgeois Society", 1991, MIT Press, Cambridge, Mass..
Katie Hafner "Where Wizards Stay Up Late: The Origins of the Internet", 1998, 1029

Simon and Schuster, New York.
Jim Hamerly, Tom PaquinSusan Walton "Freeing the Source", Open Sources: Voices 1030

from the Open Source RevolutionChris Dibona, 1999, 197-206, OReilly Press,
Sebastopol, Calif..

Garrett Hardin "The Tragedy of the Commons", Science, 162, 1968, 1, 243-48. 1031

Ulf Hashagen "History of Computing - Software Issues"Reinhard Keil-Slawik, Arthur 1032

Norberg, 2002, Springer Verlag, Berlin.
Michael Hauben, Rhonda Hauben "Netizens: On the History and Impact of Usenet 1033

and the Internet", 1997, IEEE Computer Society Press, Los Alamitos, Calif..
Marc Hauser "Moral Minds: How Nature Designed Our Universal Sense of Right and 1034

Wrong", 2006, Ecco Press, New York.
Cori Hayden "When Nature Goes Public: The Making and Unmaking of 1035

Bioprospecting in Mexico", 2003, Princeton University Press, Princeton.

Two Bits Christopher M. Kelty 243

https://twobits.net
https://kelty.org/

Friedrich A. Hayek "Law, Legislation and Liberty", Vol. 1, Rules and Order, 1970, 1036

University of Chicago Press, Chicago.
Stefan Helmreich "Silicon Second Nature: Culturing Artificial Life in a Digital World", 1037

1998, University of California Press, Berkeley.
Susan C. Herring "Gender and Democracy in Computer-Mediated Communication", 1038

Computerization and Controversy: Value Conflicts and Social ChoicesRob Kling,
Charles Dunlop, 1995, 476-89, Academic Press, Orlando.

Charlotte Hess, Elinor Ostrom "Understanding Knowledge as a Common: From 1039

Theory to Practice", 2006, MIT Press, Cambridge, Mass..
Pekka Himanen "The Hacker Ethic and the Spirit of the Information Age", 2001, 1040

Random House, New York.
Christine Hine "Virtual Ethnography", 2000, Sage, London. 1041

Douglas Holmes, George Marcus "Cultures of Expertise and the Manageňment of 1042

Globalization: Toward the Re-Functioning of Ethnography", Global
Assemblages: Technology, Politics, and Ethics as Anthropological ProblemsOng
AiwaStephen J. Collier, 2005, 235-52, Blackwell, Boston.

Oliver Wendell Holmes "The Path of Law", Harvard Law Review, 10, 1897, 457. 1043

Patrick D. Hopkins "Sex/Machine: Readings in Culture, Gender and Technology", 1044

1998, Indiana University Press, Bloomington.
Bernardo A. Huberman "The Ecology of Computation", 1988, North-Holland, 1045

Amsterdam.
Julian Huxley "New Bottles for New Wine: Essays", 1957, Harper, New York. 1046

Peter Jaszi, Martha Woodmansee "The Construction of Authorship: Textual 1047

Appropriation in Law and Literature", 1994, Duke University Press, Durham,
N.C..

Adrian Johns "The Nature of the Book: Print and Knowledge in the Making", 1998, 1048

University of Chicago Press, Chicago.
Neils Jorgensen "Putting It All in the Trunk: Incremental Software Development in 1049

the FreeBSD Open Source Project", Information Systems Journal, 11.4, 2001,
321-36.

Neils Jorgensen "Incremental and Decentralized Integration in FreeBSD", 1050

Perspectives on Free and Open Source SoftwareFeller et al., 2004, 227-44, MIT
Press, Cambridge, Mass..

Robert et al. Kahn "The Evolution of the Internet as a Global Information System", 1051

International Information and Libraries Review, 29, 1997, 129-51.
Robert Kahn, Vint Cerf "A Protocol for Packet Network Intercommunication", IEEE 1052

Transactions on Communications Com, 22.5, 1974-05, 637-44.
Peterr Keating, Alberto Cambrosio "Biomedical Platforms: Realigning the Normal 1053

and the Pathological in Late-twentieth-century Medicine", 2003, MIT Press,
Cambridge, Mass..

Christopher Kelty "Cultures Open Sources", Anthropological Quarterly, 77.3 1054

(summer), 2004, 499-506, [http://aq.gwu.edu/archive/table_summer04.htm].

Two Bits Christopher M. Kelty 244

https://twobits.net
https://kelty.org/

Christopher Kelty "Punt to Culture", Anthropological Quarterly, 77.3 (summer), 1055

2004, 547-58.
Lori Kendall "Oh No! Im a NERD! Hegemonic Masculinity on an Online Forum", 1056

Gender and Society, 14.2, 2000, 256-74.
Brian William Keves "Open Systems Formal Evaluation Process", Paper presented 1057

at the USENIX Association Proceedings of the Seventh Systems Administration
Conference (LISA VII), 1993-11-1, Monterey, California.

Tracy Kidder "The Soul of a New Machine", 1981, Little, Brown, Boston. 1058

Gill Kirkup, Linda Janes, Kath Woodward, Fiona Hovenden "The Gendered Cyborg: A 1059

Reader", 2000, Routledge, London.
Friedrich Kittler "Discourse Networks 1800/1900", 1985;, Stanford University Press, 1060

Stanford, Calif..
Friedrich Kittler "Gramophone, Film, Typewriter", 1986, Stanford University Press, 1061

Stanford, Calif..
Rob Kling "Computerization and Controversy: Value Conflicts and Social Choices", 1062

1996, Academic Press, San Diego.
Donald Knuth "The Art of Computer Programming", 1997, Addison-Wesley, 1063

Reading, Mass..
Robert Kohler "Lords of the Fly: Drosophila Genetics and the Experimental Life", 1064

1994, University of Chicago Press, Chicago.
Ernesto Laclau, Chantal Mouffe "Hegemony and Socialist Strategy", 1985, Verso, 1065

London.
Hannah Landecker "Culturing Life: How Cells Became Technologies", 2007, 1066

Harvard University Press, Cambridge, Mass..
Bruno Latour "Science in Action: How to Follow Scientists and Engineers through 1067

Society", 1987, Harvard University Press, Cambridge, Mass..
Bruno Latour "Drawing Things Together", Representation in Scientific 1068

PracticeMichael Lynch, Steve Woolgar, 1990, 19-68, MIT Press, Cambridge,
Mass..

Bruno Latour "Pandoras Hope: Essays on the Reality of Science Studies", 1999, 1069

Harvard University Press, Cambridge, Mass..
Bruno Latour "What Rules of Method for the New Socio-scientific Experiments", 1070

Experimental Cultures: Configurations between Science, Art and Technology
1830-1950, Conference Proceedings, 2001, 123, Max Planck Institute for the
History of Science, Berlin.

Bruno Latour, Peter Weibel "Making Things Public: Atmospheres of Democracy", 1071

2005, MIT Press, Cambridge, Mass..
Bruno Latour "Re-assembling the Social: An Introduction to Actor-Network Theory", 1072

2005, Oxford University Press, Oxford.

Two Bits Christopher M. Kelty 245

https://twobits.net
https://kelty.org/

John Law "Technology and Heterogeneous Engineering: The Case of Portuguese 1073

Expansion.", The Social Construction of Technological Systems: New Directions
in the Sociology and History of TechnologyW. E. Bijker, T. P. Hughes, T. J. Pinch,
1987, 111-134, MIT Press, Cambridge, Mass..

John Law, John Hassard "Actor Network Theory and After", 1999, Blackwell, Malden, 1074

Mass..
John Law "Aircraft Stories: Decentering the Object in Technoscience", 2002, Duke 1075

University Press, Durham, N.C..
James Leach, Dawn Nafus, Berbard Krieger "Gender: Integrated Report of Findings. 1076

Free/Libre and Open Source Software", Policy Support (FLOSSPOLS), D 16,
2006, [http://www.jamesleach.net/downloads/FLOSSPOLS-D16-Gender_-
Integrated_Report_of_Findings.pdf].

J. A. N. Lee, R. M. Fano, A. L. Scherr, F. J. Corbato, V. A. Vyssotsky "Project MAC", 1077

Annals of the History of Computing, 14.2, 1992, 9-42.
Josh Lerner, Jean Tirole "Some Simple Economics of Open Source", Industrial 1078

Economics, 50.2 (June), 2002-06, 197-234.
Lawrence Lessig "The New Chicago School", Legal Studies, 27.2, 1998, 661-91. 1079

Lawrence Lessig "Code and Other Laws of Cyber Space", 1999, Basic Books, New 1080

York.
Lawrence Lessig "The Future of Ideas: The Fate of the Commons in a Connected 1081

World", 2001, Random House, New York.
Lawrence Lessig "Free Culture: The Nature and Future of Creativity", 2003, 1082

Penguin, New York.
Lawrence Lessig "Code: Version 2.0", 2006, Basic Books, New York. 1083

Steven Levy "Hackers: Heroes of the Computer Revolution", 1984, Basic Books, 1084

New York.
Don Libes, Sandy Ressler "Life with UNIX: A Guide for Everyone", 1989, Prentice 1085

Hall, Englewood Cliffs, N.J..
Jennifer Light "When Computers Were Women", Technology and Culture, 40.3 1086

(July), 1999-07, 455-483.
John Lions "Lions Commentary on UNIX 6th Edition with Source Code", 1977, Peer 1087

to Peer Communications, San Jose.
Walter Lippmann "The Phantom Public", 1927, Macmillan, New York. 1088

Jessica Litman "Digital Copyright", 2001, Prometheus Books, New York. 1089

Alan Liu "The Laws of Cool: Knowledge Work and the Culture of Information", 2004, 1090

University of Chicago Press, Chicago.
Adrian MacKenzie "Cutting Code: Software and Sociality. Digital Formations Series", 1091

2005, Peter Lang, New York.
Donald A. MacKenzie "Mechanizing Proof: Computing, Risk, and Trust", 2001, MIT 1092

Press, Cambridge, Mass..

Two Bits Christopher M. Kelty 246

https://twobits.net
https://kelty.org/

Michael Mahoney "The Roots of Software Engineering", CWI Quarterly, 3.4, 1990, 1093

325-34.
Michael Mahoney "The Structures of Computation", The First Computers: History 1094

and ArchitecturesRaul Rojas, Ulf Hashagen, 2000, 17-32, MIT Press, Cambridge,
Mass..

Michael Mahoney "In Our Own Image: Creating the Computer", The Changing 1095

Image of the SciencesIda Stamhuis, Teun Koetsier, Kees de Pater, 2002, 9-28,
Kluwer Academic Publishers, Dordrecht.

Michael Mahoney "Finding a History for Software Engineering", Annals of the 1096

History of Computing, 26.1, 2004, 8-19.
Michael Mahoney "The Histories of Computing(s)", Interdisciplinary Science 1097

Reviews, 30.2, 2005, 119-35.
Carl Malamud "Exploring the Internet: A Technical Travelogue", 1992, Prentice Hall, 1098

Englewood Cliffs, N.J..
Karl Mannheim "Ideology and Utopia: Introduction to the Sociology of Knowledge", 1099

1946, Harcourt and Brace, New York.
George Marcus, Michael M. J. Fischer "Anthropology as Cultural Critique: An 1100

Experimental Moment in the Human Sciences", 1986, University of Chicago
Press, Chicago.

George Marcus, James Clifford "Writing Culture: The Poetics and Politics of 1101

Ethnography", 1986, University of California Press, Berkeley.
George Marcus "Ethnography through Thick and Thin", 1998, University of Chicago 1102

Press, Chicago.
Janer Margolis, Allen Fisher "Unlocking the Clubhouse: Women in Computing", 1103

2002, MIT Press, Cambridge, Mass..
James Martin "Viewdata and the Information Society", 1982, Prentice Hall, 1104

Englewood Cliffs, N.J..
Peter Matheson "The Imaginative World of the Reformation", 2000, T and T Clark, 1105

Edinburgh, Scotland.
Regis McKenna "Whos Afraid of Big Blue? How Companies Are Challenging IBMand 1106

Winning", 1989, Addison-Wesley, Reading, Mass..
M. Kirk McKusick "Twenty Years of Berkeley Unix: From AT&T-owned to Freely 1107

Redistributable", Open Sources: Voices from the Open Source RevolutionChris
et al. Dibona, 1999, 31-46, OReilly Press, ACM Sebastopol, Calif..

Marshall McLuhan "Understanding Media: The Extensions of Man", 1964, MIT Press, 1108

Cambridge, Mass..
Marshall McLuhan "The Gutenberg Galaxy: The Making of Typographic Man", 1966, 1109

Toronto: University of Toronto Press.
Robert Merges, Peter Menell, Mark Lemley "Intellectual Property in the New 1110

Technological Age", 2003, Aspen Publishers, New York.

Two Bits Christopher M. Kelty 247

https://twobits.net
https://kelty.org/

Robert Merton "The Normative Structure of Science", The Sociology of Science: 1111

Theoretical and Empirical Investigations, 1973, 267-80, University of Chicago
Press, Chicago.

Daniel Miller, Don Slater "The Internet: An Ethnography", 2000, Berg, Oxford. 1112

Thomas Misa, Philip Brey, Andrew’ Feenberg "Modernity and Technology", 2003, 1113

MIT Press, Cambridge, Mass..
Audris Mockus, Roy T. Fielding, James Herbsleb "Two Case Studies of Open Source 1114

Software Development: Apache and Mozilla", ACM Transactions in Software
Engineering and Methodology, 11.3, 2002, 309-46.

Annemarie Mol "The Body Multiple: Ontology in Medical Practice", 2002, Duke 1115

University Press, Durham, N.C..
Glyn Moody "Rebel Code: Inside Linux and the Open Source Revolution", 2001, 1116

Perseus, Cambridge, Mass..
Calvin Mooers "Computer Software and Copyright", Computer Surveys, 7.1 1117

(March), 1975-03, 45-72.
Milton Mueller "Ruling the Root: Internet Governance and the Taming of 1118

Cyberspace", 2004, MIT Press, Cambridge, Mass..
John Naughton "A Brief History of the Future: From Radio Days to Internet Years in 1119

a Lifetime", 2000, Overlook Press, Woodstock, N.Y..
David Noble "Digital Diploma Mills: The Automation of Higher Education", 3.1, 1120

1998-01-05, [http://www.firstmonday.org/issues/issue3_1/].
Arthur L. Norberg, Judy ONeill "A History of the Information Techniques Processing 1121

Office of the Defense Advanced Research Projects Agency", 1992, Charles
Babbage Institute, Minneapolis.

Arthur L. Norberg, Judy ONeill "Transforming Computer Technology: Information 1122

Processing for the Pentagon, 1962-1986", 1996, Johns Hopkins University
Press, Baltimore.

Walter Ong "Ramus, Method, and the Decay of Dialogue: From the Art of Discourse 1123

to the Art of Reason", 1983, University of Chicago Press, Chicago.
Elinor Ostrom "Governing the Commons: The Evolution of Institutions for Collective 1124

Action", 1991, Cambridge University Press, Cambridge.
Bruce Perens "The Open Source Definition", Open Sources: Voices from the Open 1125

Source Revolution, Dibona et al., 1999, 171-188, OReilly Press, Sebastopol,
Calif., [http://perens.com/OSD.html
http://www.oreilly.com/catalog/opensources/book/perens.html].

Bryan Pfaffenberger "A Standing Wave in the Web of our Communications: USENet 1126

and the Socio-technical Construction of Cyberspace Values", From Usenet to
CoWebs: Interacting with Social Information SpacesChristopher Lueg, Danyel
Fisher, 2003, 20-43, Springer, London.

Paul Rabinow "Essays on the Anthropology of Reason", 1997, Princeton University 1127

Press, Princeton.

Two Bits Christopher M. Kelty 248

https://twobits.net
https://kelty.org/

Paul Rabinow "Anthropos Today: Reflections on Modern Equipment", 2003, 1128

Princeton University Press, Princeton.
Matt Ratto "The Pressure of Openness: The Hybrid work of Linux Free/Open Source 1129

Kernel Developers", 2003, San Diego.
Matt Ratto "Embedded Technical Expression: Code and the Leveraging of 1130

Functionality", Information Society, 21.3 (July), 2005-07, 205-13.
Eric S Raymond "The New Hackers Dictionary", 1996, MIT Press, Cambridge, Mass.. 1131

Eric S Raymond "The Cathedral and the Bazaar: Musings on Linux and Open 1132

Source by an Accidental Revolutionary", 2001, 79-135, OReilly Press,
Sebastopol, Calif..

Eric S Raymond "The Art of UNIX Programming", 2004, Addison-Wesley, Boston. 1133

Hans-Jörg Rheinberger "Towards a History of Epistemic Things: Synthesizing 1134

Proteins in the Test Tube", 1997, Stanford University Press, Stanford, Calif..
Howard Rheingold "The Virtual Community: Homesteading on the Electronic 1135

Frontier", 1993, MIT Press, Cambridge, Mass..
Paul Ricoeur "Lectures on Ideology and Utopia", 1986, Columbia University Press, 1136

New York.
Annelise Riles "Real Time: Unwinding Technocratic and Anthropological 1137

Knowledge", American Ethnologist, 31.3 (August), 2004-08, 392-405.
Dennis Ritchie "The UNIX Time-Sharing System: A Retrospective", Bell System 1138

Technical Journal, 57.6, pt. 2 (July-August), 1978-07,
[http://cm.bell-labs.com/cm/cs/who/dmr/retroindex.html].

Mark Rose "Authors and Owners: The Invention of Copyright", 1995, Harvard 1139

University Press, Cambridge, Mass..
Peter Salus "A Quarter Century of UNIX", 1994, Addison-Wesley, Reading, Mass.. 1140

Peter Salus "Casting the Net: From ARPANET to Internet and Beyond", 1995, 1141

Addison-Wesley, Reading, Mass..
Susanne K. Schmidt, Raymund Werle "Coordinating Technology: Studies in the 1142

International Standardization of Telecommunications", 1998, MIT Press,
Cambridge, Mass..

Stephen Segaller "Nerds 2.0.1: A Brief History of the Internet", 1998, TV Books, 1143

New York.
Maha Shaikh, Tony Cornford "Version Management Tools: CVS to BK in the Linux 1144

Kernel", 2003-05-03, Portland, Oregon.
Steven Shapin, Simon Schaffer "Leviathan and the Air Pump: Hobbes, Boyle and 1145

the Experimental Life", 1985, Princeton University Press, Princeton.
Steven Shapin "The Social History of Truth: Civility and Science in Seventeenth 1146

Century England", 1994, University of Chicago Press, Chicago.
Adam Smith "The Theory of Moral Sentiments", 2002, Cambridge University Press, 1147

Cambridge.

Two Bits Christopher M. Kelty 249

https://twobits.net
https://kelty.org/

Paul K. St. Amour "The Copywrights: Intellectual Property and the Literary 1148

Imagination", 2003, Cornell University Press, Ithaca, N.Y..
William Stallings "Data and Computer Communications", 1985, Macmillan, London. 1149

Richard Stallman "The GNU Manifesto", Dr. Dobbs, 10.3 (March), 1985-03, 30-35. 1150

Susan Leigh Star "The Cultures of Computing", 1995, Blackwell, Malden, Mass.. 1151

Susan Leigh Star, Karen Ruhleder "Steps towards an Ecology of Infrastructure: 1152

Complex Problems in Design and Access for Large-scale Collaborative
Systems", Information Systems Research 7, 1996, 111-33.

Neal Stephenson "In the Beginning Was the Command Line", 1999, Avon / 1153

Perennial, New York.
Carl Sunshine "Computer Network Architectures and Protocols", 1989, Plenum 1154

Press, New York.
Shigeru Takahashi "The Rise and Fall of the Plug Compatible Manufacturers", 2005, 1155

4-16.
Andrew Tanenbaum "Computer Networks", 1981, Prentice Hall, Upper Saddle River, 1156

N.J..
Andrew Tanenbaum "Operating Systems: Design and Implementation", 1987, 1157

Prentice Hall, Englewood Cliffs, N.J..
Andrew Tanenbaum "The UNIX Marketplace in 1987: Life, the UNIverse and 1158

Everything", Proceedings of the Summer 1987 USENIX Conference, 1987,
USENIX, Phoenix, Ariz..

Charles Taylor "Sources of the Self: The Making of the Modern Identity", 1989, 1159

Harvard University Press, Cambridge, Mass..
Charles Taylor "Modes of Civil Society", Public Culture, 1990, 95-132. 1160

Charles Taylor "Multiculturalism and the Politics of Recognition", 1992, Princeton 1161

University Press, Princeton, N.J..
Charles Taylor "Modern Social Imaginaries", 2004, Duke University Press, Durham, 1162

N.C..
Charis Thompson "Making Parents: The Ontological Choreography of Reproductive 1163

Technologies", 2005, MIT Press, Cambridge, Mass..
Ken Thompson, Dennis Ritchie "The UNIX Time-Sharing System", 17.7 (July), 1974, 1164

365-75.
Walter F Tichy "RCS: A System for Version Control", Software: Practice and 1165

Experience, 15.7 (July), 1985, 637-54.
Linus Torvalds, David Diamond "Just for Fun: The Story of an Accidental 1166

Revolutionary", 2002, HarperCollins, New York.
Ilkka Tuomi "Networks of Innovation: Change and Meaning in the Age of the 1167

Internet", 2002, Oxford University Press, New York.
Alan Turing "On Computable Numbers, with an Application to the 1168

Ent-scheidungsproblem", 2.1, 1937, 230.

Two Bits Christopher M. Kelty 250

https://twobits.net
https://kelty.org/

Sherry Turkle "The Second Self: Computers and the Human Spirit", 1984, New York: 1169

Simon and Schuster.
Sherry Turkle "Life on the Screen: Identity in the Age of the Internet", 1995, Simon 1170

and Schuster, New York.
Fred Turner "Where the Counterculture Met the New Economy", Technology and 1171

Culture, 46.3 (July), 2005-07, 485-512.
Fred Turner "From Counterculture to Cyberculture: Stewart Brand, the Whole Earth 1172

Network, and the Rise of Digital Utopianism", 2006, University of Chicago
Press, Chicago.

Ellen Ullman "Close to the Machine: Technophilia and Its Discontents", 1997, City 1173

Lights, San Francisco.
Ellen Ullman "The Bug: A Novel", 2003, Nan A. Talese, New York. 1174

Siva Vaidhyanathan "Copyrights and Copywrongs; The Rise of Intellectual Property 1175

and How It Threatens Creativity", 2001, New York University Press, New York.
Greg R. Vetter "The Collaborative Integrity of Open-Source Software", Utah Law 1176

Review, 2004.2, 2004, 563-700.
Greg R. Vetter "Infectious Open Source Software: Spreading Incentives or 1177

Promoting Resistance?", Rutgers Law Journal, 36.1 (fall), 2004, 53-162.
Vernor Vinge "The Coming Technological Singularity: How to Survive in the 1178

Post-Human Era", 1993,
[http://www.rohan.sdsu.edu/faculty/vinge/misc/singularity.html].

Eric Von Hippel "Democratizing Innovation", 2005, MIT Press, Cambridge, Mass.. 1179

Judy Wajcman "Feminism Confronts Technology", 1991, Polity, Cambridge. 1180

Judy Wajcman "Reflections on Gender and Technology Studies: In What State Is the 1181

Art?", Social Studies of Science, 30.3, 2000, 447-64.
Mitchell Waldrop "The Dream Machine: J. C. R. Licklider and the Revolution that 1182

Made Computing Personal", 2002, Viking, New York.
John Walsh, Todd Bayma "Computer Networks and Scientific Work", Social Studies 1183

of Science, 26.3 (August), 1996-08, 661-703.
Michael Warner "The Letters of the Republic: Publication and the Public Sphere in 1184

Eighteenth-century America", 1990, Harvard University Press, Cambridge,
Mass..

Michael Warner "Publics and Counterpublics", Public Culture, 14.1, 2002, 49-90. 1185

Michael Warner "Publics and Counterpublics", 2003, Zone Books, New York. 1186

Peter Wayner "Free for All: How LINUX and the Free Software Movement Undercut 1187

the High-Tech Titans", 2000, Harper Business, New York.
Max Weber "Objectivity in the Social Sciences and Social Policy", The Methodology 1188

of the Social SciencesEdward Shils, Henry A. Finch, 1949, 50-112, Free Press,
New York.

Steven Weber "The Success of Open Source", 2004, Harvard University Press, 1189

Cambridge, Mass..

Two Bits Christopher M. Kelty 251

https://twobits.net
https://kelty.org/

Richard L. Wexelblat "History of Programming Languages", 1981, Academic Press, 1190

New York.
Sam Williams "Free as in Freedom: Richard Stallmans Crusade for Free Software", 1191

2002, OReilly Press, Sebastopol, Calif..
Fiona Wilson "Cant Compute, Wont Compute: Womens Participation in the Culture 1192

of Computing", New Technology, Work and Employment, 18.2, 2003, 127-42.
Samuel M. Wilson, Leighton C. Peterson "The Anthropology of Online 1193

Communities", Annual Reviews of Anthropology, 31, 2002, 449-67.
Biao Xiang "Global Bodyshopping: An Indian Labor System in the Information 1194

Technology Industry", 2006, Princeton University Press, Princeton.
Slavoj iek "Mapping Ideology", 1994, Verso, London. 1195

Two Bits Christopher M. Kelty 252

https://twobits.net
https://kelty.org/

Book Index 1196

Two Bits Christopher M. Kelty 253

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Index

Abelson, Hal 87, 741, 761-763
Actor Network Theory 67, 341, 789
adaptability 40, 52, 618, 627, 642,
702, 708, adaptation vs., 618, as a form
of critique, 618, 702, planning vs., 618,
627, 642, 708
Adaptability 710, planning vs., 710
affinity (of geeks) 38-39, 80-83, 102,
130, 183-185, 237, 289, 339-340, 538,
729, 865, 874-876
allegory, of Protestant Reformation
189-243, 288, 341, 433
American National Standards
Institute (ANSI) 457-458
Amicas (corporation) 95-104,
134-136, 244-261, 435
anarchism 628, 889
Andreessen, Marc 300-303, 664
antitrust 160, 364, 473-475, 490
Apache (Free Software project) 52,
322, 334, 620-624, 622-625, 661-689,
676, 691-692, 805, individual vs. group
innovation, 676
Applied Data Research
(corporation) 363
Arendt, Hannah 72
Arpanet (network) 353, 403-410,
483-501, 519, 609, 630, 664
artificial intelligence 263-269, 274
Artificial Intelligence Lab (AI Lab),
at MIT 529-539
artificial Intelligence Lab (AI Lab),
at MIT 608-614
AT&T 350-352, 370-384, 371, 401, 446,
447, 464-471, 477, 556, 561, 566, 569,
591, 636, 688, 711, 885, Bell
Laboratories, 371, 688, 711, divestiture
in, 591, divestiture in 1984, 447, version
of EMACS, 561, 566, 569, version of
UNIX, 401, 446
attribution 779, 818, 829, 849,
copyright licenses and, 779, 829,
copyright licensing and, 818, dissavowal
of, 849

Authorship 814-843
authorship 229, 567, 601, 755, 798,
819, moral rights of, 755, ownership vs.,
601, 819
availability 40, 442, 480, 506, 886,
open systems and, 40, 442, 480, 506,
reorientation of power knowledge and,
886
Bangalore 131-138
Baraniuk, Richard 721-757, 793, 865
Barlow, John Perry 137, 165, 775
Behlendorf, Brian 332-334, 665, as
head of Apache, 665
Bentham, Jeremy 522-523
Berkeley Systems Distribution
(BSD) (version of UNIX) 334, 401-410,
459, 508, 646, 674, 691, 710-711,
FreeBSD, 646, 674, 691
Berkman Center for Internet and
Society 762-763
Berlin 65, 78-80, 111-113, 129, 134,
183
Berners-Lee, Tim 308-309, 509, 663
Bitkeeper (Source Code
Management software) 693-705
blogosphere, as recursive public
877
Bolt, Beranek, and Newman (BBN)
404
Bone, Jeff 152-178
Boyle, James 89, 751, 759-762, 769,
780-782
Brin, David 157
Brooks, Frederick 364
Brown, Glen Otis 775-785, 843,
845-868
Bruno, Giordano 492
BSD License 311, 313, 407-409
bugs 318, 666, 687, 708-713
Burris, C. Sidney 735
C (programming language) 350, 369
Calvinism 286
Cathedral and the Bazaar 63, 323,
327-330, 720

Two Bits Christopher M. Kelty 254

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

censorship 153, 159-160, 164-169
Cerf, Vinton 403, 497-499
Chari, Bharath 136
Clark, David 174, 178, 498
COBOL (programming language)
360
Coleman, Gabriella 517
collaboration 442, 460, 680, 830, 884,
competition vs., 442, 460, 884, different
meanings of, 680, forking vs., 830
Commité Consultative de
Information, Technologie et
Télécommunications (CCITT) 489,
504
commons 57-59, 100, 729-730
communities 628, 743, 748, 812, 822,
823, norms and, 812, 822, 823
comp.os.minix 640, 643, 646, ”Linux
is obsolete” debate on, 646
Computer Corporation of America
(CCA) 546-606, 591
Concurrent Versioning System (cvs)
318, 623, 686, 690, 693, history of, 690,
Linux and, 693
Connexions project 23, 29, 41, 58-59,
62, 722-729, 731, 735, 737, 738, 740,
741, 744, 748, 759, 769, 779, 798, 798,
799, 801, 808, 810, 814, 816, as Free
Software project, 748, as ”factory of
knowledge”, 738, connection to
Creative Commons, 759, 769, history
and genesis of, 731, line between
content and software, 808, meaning of
publication, 798, model of learning, 744,
model of learning in, 737, modules in,
737, Open CourseWare, 741, 769,
relationship to education, 740,
relationship to hypertext, 779, roles in,
810, 814, 816, stages of producing a
document in, 799, 801, textbooks and,
735, 798
content 750-755
control, relationship to power 215,
218
CONTU report 594
coordination (component of Free
Software) 52, 315-321, 616-619, 618,
626-635, 636, 648, 662, 666-716, 679,
697, 710, 728, 743, 748, 756, 813, 824,

individual virtuosity vs. hierarchical
planning, 618, 648, 662, 679, 710,
modulations of, 697, 743, 748, 756, 813,
824, of Linux vs. Minix, 636
copyleft licenses (component of
Free Software) 147, 744, 748, 825,
derivative uses and, 825, modulations
of, 744, 748, 825
Copyleft licenses (component of
Free Software) 310-314, 407, 513,
514-624, 524, 751, 762, 779, 830, 836,
848, 849, 887, as hack of copyright law,
524, commercial use and, 779, Creative
Commons version, 848, derivative uses
and, 779, 836, 849, disavowal clause in,
849, forking and, 830, modulations of,
751, 762
Copyright 229-231, 524-525, 525, 539,
545, 586, changes in 1976, 525, 539,
586, changes in 1980, 539, 586,
infringement and software, 545, legal
definition of software and, 545,
requirement to register, 586, rights
granted by, 525, software and
copyrightability, 545
copyright 28-29, 391, 604, 765, 807,
815, changes in 1976, 391, requirement
to register, 765, specificity of media
and, 807, transfer of, 604, works for
hire, 815
copyright infringement 586, 600,
603, legal threats and, 603,
redistribution of software as, 600
Copyright infringement 558, 561,
568, 569, 582, EMACS controversy and,
558, 569, infringement on own
invention, 582, legal threats and, 568,
permissions and, 561
Crain, Patricia 228-229
Creative Commons 23, 29, 41, 58-59,
62, 729-730, 759-785, 762, 765, 769,
778, 818-820, 848, activism of, 765,
connection to Connexions, 759, 769,
marketing of, 778, origin and history of,
762, writing of licenses, 848
credit 815-820, 849-855, 888, see also
attribution, 849, 888
critique, Free Software as 618-619,
660, 702-705, 716

Two Bits Christopher M. Kelty 255

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

cultural significance 45-46, 727, 787,
878
culture 20, 115, 134, 723, 844, 856,
860, as experimental system, 20,
Creative Commons version of, 856, law
vs., 860, punting to, 844
Cygnus Solutions (corporation) 298,
332
debugging 638-643, 666, 681, 708,
patching vs., 666, 681, 708
Defense Advanced Research
Projects Agency (DARPA) 403-410,
496-497
Defense, Department of 496-507
Delanda, Manuel 520
design 245-247, 392-394, 533-534,
651, 653, evolution, and, 653
Dewey, John 75, 241, 522, 716, 718
diff (software tool) 379-381, 400, 688,
711, history of, 688
differentiation of software 352, 401,
412-413, 453-454, 677, in Apache, 677,
see also forking and sharing source
code, 677
Digital Equipment Corporation
(corporation) 423-424, 487, 556-557,
DECNet, 487
Digital Millennium Copyright Act
(DMCA) 298
Digital signal processing (DSP) 722,
734, 793, 813
Disney, Walt 767
distance learning 740-742
distributed phenomena,
ethnography of 65-71
Domain Name System (DNS) 156,
322
dotcom era 332-336
Doyle, Sean 93-99, 129, 165, 183,
219-225, 244-247, 256-261, 435
Dyson, Esther 165
editions, print vs. electronic
805-808, see also versions, 805
Eisenstein, Elizabeth 795-796, 803
Eldred, Eric 761-764
EMACS (text editor) 211, 519-624,
527, 532, 541, 544, 558, 629, 645, 701,
754, 887, controversy about, 541, 701,
887, ersatz versions, 532, 541, 544,

legal status of, 558, modularity and
extensibility of, 527, number of users,
645
EMACS commune 535-554, 555,
568-569
End User License Agreements
(EULAs) 517
enlightenment 190-193, 238-241,
260-261, 751, 796
entrepreneurialism 102-106, 247-255,
889
ethnographic data 68, 519,
availability of, 68, 519, mailing lists and,
519
ethnography 63-64, 79-80, 341-342
evil 219-225, 232-233, 309
Evil 435
experiment, collective technical
53-55, 293, 886-889
experimentation 522, 606, 620,
623-624, 714-716, 718, 726-727,
783-784, 832-833, administrative
reform as, 522, see also modulations,
726
Extensible Mark-up Language (XML)
802-803, 833
Extropians 264
fair use 586-587, 595, 865
Feyerabend, Paul 259-260
figuring out 58-59, 62-63, 192,
340-342, 419, 451-452, 522, 705,
770-785, 789, 826-829, 835, 881
File Transfer Protocol (ftp) 639
finality 41-43, 789-846, 803, 810,
certainty and stability vs., 789, fixity vs.,
810, in Wikipedia and Connexions, 803
Firefox 295, 319-320, see also
Netscape Navigator, 319
fixity 796-803, 810
folklore of Internet 164, see also
usable pasts, 164
forking 397-410, 677, 694, 827, in
Apache, 677, in Connexions, 827, in
Linux, 694
FORTRAN (programming language)
355, 360
Foucault, Michel 193, 238-241
Free Documentation License (FDL)
754-755, 754-755

Two Bits Christopher M. Kelty 256

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Free software 480, components of,
480
Free Software 19-22, 20, 25, 45, 48,
55, 291-346, 292, 297, 338, 377, 617,
696, 720, 727, 794, anthropology and,
720, as experimental system, 20, 45,
292, components of, 727, modulations
of, 55, 794, nonfree tools and, 696,
open source vs., 20, 48, 297, 338, 617,
passim, 377, relation to Internet, 25
Free Software Foundation 103,
297-298, 324, 328, 604-612, 614, 629,
644-645, 834-835, cult status of, 629,
Linux and Apache vs., 614
FreeBSD 646, 674, 691
Freeware summit 323-328
fun, and development of Linux 623,
645-646
Fun, and development of Linux 697
futurology 262-282
Geeks 20-21, 190-196
geeks 27, 63, 77-83, 101-109, 106,
193, 240, 281, 288-289, 299-302, 341,
345, 501, 512, 609, 716, 772, 812, as
moderns, 193, 240, 281, 716, hackers
vs., 106, self-representation, 63, 341
Geertz, Clifford 122-125
Gender 135
gender 280, 721
General Motors (GM) 431, 503
General Public License (GPL)
310-313, 514-624, 610, 629, 698, 754,
development of, 610, passim, 698, 754
Gilmore, John 164-165
GNU (Gnu’s Not Unix) 480, 544-584
GNU C Compiler (gcc) 202-208, 523,
629, 637
GNU Hurd (kernel) 629
GNU Manifesto 551-558, 583
goals, lack of in Free Software
618-619, 681-683
Goals, lack of in Free Software 791,
norms as, 791
Goody, Jack 795
Gosling, James 543-607, 712
GOSMACS (version of EMACS)
543-584, 601, 712
Grassmuck, Volker 113
Gropper, Adrian 93-99, 129, 247-255,

435
Grune, Dick 690
Gulhati, Ashish 174
Habermas, Jürgen 71-73, 117, 148
Hacker ethic 519-520, 570-572
hacker ethic 51, 606-615
hackers 106-109, 330-334, 519, 606,
618, 626-627, curiosity and virtuosity of,
618, hacks and, 519
Hahn, Eric 307, 323
Harthill, Rob 671-683
Hayden, Robert 107-109
Hayek, Friedrich 241, 286, 485
healthcare 248, 250, allocation of, 250,
information technology in, 248
Hecker, Frank 306-307, 323
Hendricks, Brent 721-757, 793, 812,
815-829, 836, 865
hierarchy, in coordination 618-623,
648-658
Holmes, Oliver Wendell 847
Hopper, Grace 355
Housman, A. E. 821
httpd 622, 663-685
Huxley, Julian 265
Hypertext Transfer Mark-up
Language (HTML) 663, 803
Hypertext Transfer Protocol (http)
222, 509, 663
ideology 119-125
implementation of software 349
Informatics (corporation) 363
information society 31, 70, see also
public sphere, 70
Infrastructure 184-188
infrastructure 104, 233-237, 417,
479-480, 613, 620, 631, 750, 797, 886,
of publishing, 750, 797
Institute of Electrical and
Electronics Engineers (IEEE)
457-460, 473
institutional economics 780-782
Intel (corporation) 422-424, 476
intellectual property 193, 231, 233,
298, 305, 310, 328-329, 388-391,
407-409, 418, 436-442, 514-624, 567,
592, 595-615, 849, 884-887, strategy
and, 567, 592, 849
Intellectual property 196, 349

Two Bits Christopher M. Kelty 257

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

International Business Machines
(IBM) 214, 349, 423-424, 459-461
International Organization for
Standardization (ISO) 489-493,
492-495, 883
International Telecommunications
Union (ITU) 489-495
Internet 25-37, 36, 67-68, 78-83, 101,
115, 131, 139, 150, 152, 162-171, 164,
172-181, 489, 627, 882, early
development, 489, 627, folklore and,
164, geeks and, 101, idea of order and,
115, India and, 131, public spheres and,
139, relation to Free Software, 25, 627,
singularity of, 36, 150, 152, 882
Internet Engineering Task Force
(IETF) 173-181, 507
Internet Society (ISOC) 178, 507
interoperability 418-439, 462, 480,
494-506
intervention, technology as 194,
247-289, 780, 811
Johns, Adrian 795-798
Joy, Bill 400-409, 432-433, 461, 528,
557, 712
Justice, Department of 301, 364
Kahn, Robert 403, 497
Kant, Immanuel 193, 238-239, 261,
520, 716
Katz, Lou 379-382
Keynes, John Maynard 485
Kittler, Friedrich 795
Labalme, Fen 564-572
lag, technological 256-258
LaTeX (typesetting language) 801
Latour, Bruno 796
legitimacy 30, circulation of knowledge
and, 30
legitimacy, circulation of
knowledge and 878-884
Leitl, Eugene 152, 175, 274-282, 336
Lessig, Lawrence 168-170, 761-785,
767, 780, 861, law and economics and,
780, 861, style of presentations, 767
liberalism, classical 157
libertarianism 164-165, 328
licensing, of UNIX 371-377
Licklider, J. C. R. 403
Linux (Free Software project) 52,

209, 322, 335, 396, 511, 608, 619-627,
630, 649, 651, 684, 691, 693, 736, 805,
origins in Minix, 396, 630, planning vs.
adaptability in, 651, process of decision
making, 649, Source Code Management
tools and, 684, VGER tree and, 693
Lions, John 386-396
LISP (programming language) 360,
599, interpreter in EMACS, 599
Locke, John 157
Luther, Martin 196-211
mainframes 422-426
Malmud, Carl 491-492
Mannheim, Karl 122-123
Massachusetts Institute of
Technology (MIT) 103, 608-614, 741,
open courseware and, 741
McCool, Rob 300, 622, 663-666
McGill, Scott 821
McIlroy, Douglas 370, 688
McKenna, Regis 439-440
McLuhan, Marshall 803
McVoy, Larry 694-705
meaning, regulation through law
861
MedCommons 100-102
mergers 462-464
Merton, Robert 791, 810, 890,
Mertonian norms, 791, 810, 890
Metcalfe’s Law 157
Mickey Mouse 767
microcomputers 426-428
Microsoft 213, 221, 225, 229, 301, 309,
387, 409, 461, 476, 547, 709, as
Catholic Church, 213, 225, Internet
Explorer, 221, 225, 229, 301, Windows
operating system, 387, 409, 476, Xenix
(version of UNIX), 547
Mikro e.V. 112-113
Mill, John Stuart 157, 241
Miller, Dave 693
Minix (operating system) 394-396,
398-399, 621-622, 644, goals of, 644
Minix (operating systems) 630-649
modernity 238-240, 838, tradition and,
838
modifiability 38-44, 40-44, 41, 58-59,
441-442, 442, 480-485, 480-484, 508,
534, 592, 637-639, 652, 682, 710-713,

Two Bits Christopher M. Kelty 258

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

751-755, 773-779, 789, 824-827, 837,
887-891, EMACS and, 534, implications
for finality, 41, 789, modularity in
software, 652, 682, relation of different
disciplines to, 837
modulation 55, 622, 721, 726, 743,
747, 773, 783, 871, of Free Software, 55,
622, 721, 783, 871, practices of, 726,
743, 747, 773
Monopoly 435
monopoly 160, 351, 364, 371, 417-418,
438-441, 460, 476
Montgomery, Warren 560, 591
Moody, Glyn 64, 694
Moore’s Law 157
moral and technical order 79-82,
129-130, 148-150, 164, 173-174, 184,
188, 190, 194, 235, 273, 331, 342, 348,
384, 408-413, 417-420, 435-436, 452,
482, 511, 534-541, 631, 705, 730, 764,
771-772, 838, 865, 871, 884-889
Mosaic (web browser) 300-303, 509,
664
Motion Picture Association of
America (MPAA) 160
movement (component of Free
Software) 48, 292-295, 322-346, 339,
624, 728-730, 833, 876, function of,
339, modulations of, 833, 876
Mozilla 222, 300-323
Mozilla Public License (MPL)
311-313
Multi-User Dungeons (MUDS) 628
Multics 369-370, 531
music 132-133, 182, 185, 804, 861-864,
875, production, 804, recursive public
and, 875
Napster 27, 80-82, 149, 151-172,
173-181, 188, 193, 278, 420, 766
National Center for Super
Computing Applications (NCSA)
300-303, 622, 664-666
Nesson, Charlie 775
Net neutrality 36
net.emacs (mailing list) 546-584
Netscape 47-48, 295-321, 330-331
Netscape Navigator 319-320
Netscape Navigator (application)
47, 295-321, 509

Netscape Public License (NPL) 311
Networks 482, 487, as products, 487,
protools for, 482, varieties of, 487
new httpd (mailing list) 665-689
norms 59, 168, 786-798, 790, 813, 825,
827, 835, 839-843, 841-845, 842, 843,
851, 858, 859, academic, 813, 827, 851,
channeling by legal means, 843, 859,
coordination and, 825, cultural, 835,
842, 858, evolution and, 841, existence
of, 59, 790, 839, practices and
technology vs., 835
Novell 477
novelty, of Free Software 619,
704-705
Ong, Walter 795
ontology 383, 395, 412, 660, of linux,
660, of UNIX operating system, 383,
395, 412
Open access 21-23
open access 876, recursive public and,
876
Open content licenses 755
Open CourseWare (OCW) 741-743,
769-771
Open Software Foundation (OSF)
452
Open Source 20, 48, 297, 324, 335,
478, 617, 736, Free Software vs., 20, 48,
297, 335, 617, inspiration for
Connexions, 736, ”Open Source
Definition”, 324
Open Source Initiative 325
Open Sources 334
Open Systems 47, 50, 112, 308-310,
414-513, 434, 447, 481, 519, 540, 612,
884-887, intellectual property and, 434,
networks and, 481, operating systems
and, 447
Open Systems Interconnection
(OSI) 353, 400, 419, 482, as reference
model, 419, 482, TCP/IP, 353, 400
openness 47-50
Openness (component of Free
Software) 419, 432, 476, proprietary
vs., 432, 476, standardization and, 419
openness (component of Free
Software) 412, 414-442, 418, 429, 432,
434, 466, 471, 476-486, 749-751, 751,

Two Bits Christopher M. Kelty 259

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

825, closure vs., 434, definition of, 432,
goals of, 429, intellectual property and,
418, modulations of, 749, 825,
proprietary vs., 466, 751,
standardization and, 471, sustainability
vs., 751
operating systems, history of
350-390
OReilly Press 323-324, 334
OReilly, Tim 323
packet-switching 496-497
participant observation 721,
783-784, 790-791, 848, writing
copyright licenses as, 848
Pascal (programming language)
400-402
patches (software) 649-652, 661,
666, debugging vs., 666, voting in
software development and, 661
patents on software 586-587
pedagogy 348, 412, 480, 504, 630,
643, 729, Minix and, 643, network
protocols and, 504, operating systems
and, 348, 412, 480, 630
peer production 617, 885
Perens, Bruce 313, 323, 701
perl (programming language) 54,
201, 323, 625
permission 817-826
planning 42-43, 180, 618-619, 710-712

polymaths 780, 811
Polymaths 234, transhumanists vs.,
234
portability, of operating systems
360-368, 446-450
POSIX (standard) 452, 457-458
power, relationship to control 215,
225, see also reorientation of power and
knowledge, 225
practices 41-44, 292, 338-342, 341,
518, 520, 586, 617, 726, 743, 748, 835,
872-874, five components of Free
Software, 292, 520, 617, 726, 743, 748,
872, norms vs., 835, opposed to legal
changes, 586, stories as, 341, ”archival
hubris”, 341
Practices 29, five components of Free
Software, 29

pragmatism 259
Prentice Hall 639-640
printing press 795-797, 809
programming 175-176, 244-247,
350-361
programming languages 199-201,
350-396
progress 237, 266-271, 281-288
Progress 190-193
proliferation of software 351-352,
359-361, 412-413, 453-454, 531-532,
613, 885
proprietary systems 95, 371, 416,
422, closed, 95, lock-in and, 422, open
vs., 371, 416
Protestant Reformation 189-243,
433
protestant Reformation 160, as
usable past, 160
protocols 164, 177, 353, 400, 419, 482,
distinguished from standards and
implementation, 353, 400, Open
Systems Interconnection (OSI), 419,
482, TCP/IP, 164, 177, 419, 482
public 23-29, 30-33, 115-130, 142, 144,
148, 181-188, 233, 835, 872-877,
autotelic and independent, 144, 148,
835, see also recursive public, 872,
self-grounding of, 142
Public domain 549, contrasted with
free, 549
public domain 308, 351, 547, 765-769,
782, 818, 821, Creative Commons
licenses and, 818, environmentalism
and, 782, literary texts in, 821, meaning
in EMACS controversy, 547
public sphere 25, 34, 38, 70, 115, 620,
879, recursive public vs., 34, 38, 879,
theories of, 25, 70, 115, 620
publication 147-148, 161-163, 790,
798, as notional event, 798,
transformation by Internet, 790
python (programming language)
201, 625
QED (text editor) 529
Raelians 264
Rand, Ayn 157
Raymond, Eric Steven 63-64, 297,
323, 325, 327-330, 334-335, 334-335,

Two Bits Christopher M. Kelty 260

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

338, 341, 344, 448, 626, 708, 720-724
RCS (software tool) 689-690, see also
Source Code Management tools, 689
Recording Industry Association of
America (RIAA) 152-153, 159-160,
174, 766
recursion, definition of 84-89
recursive public 23, 32, 35, 77-89, 82,
88, 149, 154, 168, 174, 233, 312, 342,
351, 374, 393-399, 506-509, 520, 538,
619-620, 660, 685, 702, 716, 727-730,
729, 787-789, 812, 835, 865, definition
of, 23, 32, examples of, 154, 729, layers
of, 35, 82, 88, 149, 154, 168, 174, 685,
702, precursors of, 351, 374
Red Hat (corporation) 332
Redd, Kross 777
redistribution of software 600-604
Reedstrom, Ross 736, 742, 793, 836
Reformation vs. revolution 215
reformation vs. revolution 196, 253
regulation 168, 489, Internet, 168,
telecommunications, 489
religion 248
Religion 135-136
religious wars 196-201, 482-485
reorientation of power and
knowledge 20-21, 30-44, 182, 346,
441, 501, 520, 716, 782, 788-790, 795,
806-810, 872-891
Request for Comments (RFC) 171,
172-179, 483, 499-501, 883
reverse engineering 701
Rheingold, Howard 137, 165, 627
Rice University 720-723, 735, 769,
legal counsel of, 769
Richards, Paul 691
Ricoeur, Paul 124-125
Ritchie, Dennis 369-388, 413, 710-712

Roles, in Connexions 814-843
rumor on Usenet 558-565, 627-635
Rumor on Usenet 664
Sahlins, Marshall 849-851
Salus, Peter 64, 375-381, 405
sampling, musical 861-864
SCO (corporation) 450, 477
Second Life, as recursive public 877
Secrecy 349-356, 500-501, 534

secrecy 303-309, 474, 592
Shakar, Udhay 132-138, 165
Shambhala 677-683, 691, see also
Apache, 691
Shannon, Claude 111
sharing source code (component of
Free Software) 48, 348-398, 355, 378,
379, 387, 398-413, 518, 743, 747, 765,
824, before Software, 355, legal aspects,
379, modulations of, 743, 747, 765, 824,
pedagogical aspects, 378, 387,
technical aspects, 379
Silk-list (mailing list) 136-141, 139,
as a public, 139
singularity 157, 267-276
Skolnick, Cliff 668, 672, 674
social imaginary 44, 70-72, 115-130,
118, 124, 142-146, 164-174, 191, 342,
430, 482, 518, 764, 772-773, 880,
ideology vs., 118, 124
social movement, theories of 339
Software 500, 595, implementation of,
500, legal definition of source code and,
595, registration of copyright, 595
software 545, 586, copyrightability of,
545, registration of copyright, 586
Software development 327-334,
339-340
software development 243-246,
316-318, 584, 661, 666, 691, 713,
Apache project, 666, as spectrum, 713,
creating vs. maintaining, 584, patch and
vote method, 661, 691
Software manuals 754
software tools 318, 377-379, 687-688
Solaris (operating system) 409, 450,
464
Source code 442-444
source code 355, 359, 361-368,
587-588, 595, batch processing, 359,
legal definition and, 595, translation of,
355
Source Code Management tools
(SCMs) 617, 623, 684-705, 685, 686,
687, 691, 693, as tool for distribution,
687, definition of, 685, right to ”commit”
change, 691, see also Bitkeeper, 693,
see also Concurrent Versioning System
(cvs), 686

Two Bits Christopher M. Kelty 261

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Sparc (computer workstation) 409,
488
Stallman, Richard 211, 297-298, 313,
324, 327-330, 332-334, 338, 341, 344,
514-624, 626, 697, 754, 887
Stallman,Richard 645
standards 95, 112, 173, 222, 229, 233,
244, 309, 359, 415-417, 427, 437,
438-442, 445, 452, 458, 473, 485, 500,
508, 883-884, as form of competition,
427, 437, 445, 458, implementation,
458, 500, interface definition as, 452,
Internet, 95, 112, 173, 222, 229, 233,
ownership of, 309, 473, programming
languages, 359, validation of, 485, 500,
508
Standards 149, Internet, 149
standards organizations 419,
454-480, 501
standards processes 173-175,
178-180, 412, 482-485, 491-495, 499,
883-884
Sun Microsystems 303, 400, 461-470,
556-557, 696
Sundaram, Ram 136
System V Interface Definition
(SVID) 458
Tanenbaum, Andrew 386-387, 394,
621-648, 630, 639, Minix and, 394, 630,
639
Taylor, Charles 72, 117-120, 126-129,
140-142, 173
tcl/tk (programming language) 201,
625
TCP/IP (Transmission Control
Protocol/Internet Protocol) 164, 177,
353, 400, 419, 482-509, 497, goals of,
497, included in BSD, 400
Technology 256, lag, 256
technology 27, 32, 34, 39, 82, 251,
282, 780, as argument, 27, 34, 39, 82,
282, 780, meanings of, 251, politics of,
32
TECO (text editor and programming
language) 529-530, 572, 598
Teilhard de Chardin, Pierre 265
telecommunications industry
489-494
Terbush, Randy 678

TeX 54
text editors 358-359, 401-402,
527-540
textbooks 394, 639, 722, 750, 834,
model in Connexions, 750, 834, on
operating systems and networks, 394,
639
Thau, Robert 677-683
Thompson, Ken 369-385, 400-401,
413, 688
time 241, 256, 262, 267, 281, initial
conditions and, 281, singularity and,
267, technical progress and, 241, 256,
262
Torek, Chris 601
Torvalds, Linus 209-210, 326, 332,
338, 608, 623-626, 626, 693,
autobiography of, 626, in bitkeeper
controversy, 693
trade secret law 377, 390-391,
398-399, 545, 589, 597, relationship to
public domain, 589
Trade secret law 586-592
trademark law 407, 545
Transhumanism 234, polymaths vs.,
234
transhumanism 157, 189, 194, 265,
267, 811, Julian Huxley and, 265,
singularity and, 267
translation of source code 355-360
Traweek, Sharon 860
Trigdell, Andrew 701
Turing, Alan 355-357
unbundling 349, 362-364
uncertainty, in the law 586-606
Unipress 543-584, 599
Unisys 462-464
UNIX International 452, 469-472
UNIX operating system 202, 350-353,
353, 367, 387, 394, 401, 443, 448, 449,
626, 710, 805, 885, allegiance to
versions of, 448, 805, 885, as
commercial product, 394, as part of
speech, 449, development of, 710,
history of, 367, 443, Open Systems and,
443, relationship to Arpanet, 353, 401,
standardization and, 443, Windows
operating system vs., 387
UNIX philosophy 353, 386-387, 413

Two Bits Christopher M. Kelty 262

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Unix to Unix copy protocol (uucp)
488
UNIX wars 446, 469-472
usable pasts 191-193, 213, 235,
282-288, 334, 344, 433
Usable pasts 492
Usenet 488, 519, 558, 597, 609, 627,
664, rumor on, 558, 627, 664
Usenix (user group) 377
user groups 456-457, /usr/group, 456
User groups 664
users, status in Connexions 815
VA Linux (corporation) 298, 332-335
vi (text editor) 401-402, 528
Vinge, Vernor 157, 267
Wall, Larry 332
Warner, Michael 117, 142-146
Weber, Max 66
Weber, Steven 314, 649, 707
White Stripes 777-778

Wikipedia (collaborative
encyclopedia) 26, 803-804, 815, 832
Wiley, Davis 755
Wilson, Andrew 668-670, 674
Wired (magazine) 137, 165, 664,
HotWired (online version of Wired), 664
workstations 446, 461-464
World Wide Web (www) 303, 308,
484, 509, 663-665
World Wide Web consortium (w3c)
309
X Windows 480
X/Open Consortium 452, 459-479,
465
Xerox PARC 488
Zawinski, Jamie 300-305, 319-322
Zimmerman, Steve 546-606, 591, 605

Two Bits Christopher M. Kelty 263

https://twobits.net
https://kelty.org/

	Two Bits
	Dedication
	Preface
	Acknowledgements
	Introduction

	Part I the internet
	1. Geeks and Recursive Publics
	From the Facts of Human Activity
	Geeks and Their Internets
	Operating Systems and Social Systems
	The Idea of Order at the Keyboard
	Internet Silk Road
	/pub
	From Napster to the Internet
	Requests for Comments
	Conclusion: Recursive Public

	2. Protestant Reformers, Polymaths, Transhumanists
	Protestant Reformation
	Polymaths and Transhumanists
	Conclusion

	Part II free software
	3. The Movement
	Forking Free Software, 1997-2000
	A Movement?
	Conclusion

	4. Sharing Source Code
	Before Source
	The UNIX Time-Sharing System
	Sharing UNIX
	Porting UNIX
	Forking UNIX
	Conclusion

	5. Conceiving Open Systems
	Hopelessly Plural
	Open Systems One: Operating Systems
	Figuring Out Goes Haywire
	Denouement
	Open Systems Two: Networks
	Bootstrapping Networks
	Success as Failure
	Conclusion

	6. Writing Copyright Licenses
	Free Software Licenses, Once More with Feeling
	EMACS, the Extensible, Customizable, Self-documenting, Real-time Display Editor
	The Controversy
	The Context of Copyright
	Conclusion

	7. Coordinating Collaborations
	From UNIX to Minix to Linux
	Design and Adaptability
	Patch and Vote
	Check Out and Commit
	Coordination Is Design
	Conclusion: Experiments and Modulations

	Part III modulations
	8. ''If We Succeed, We Will Disappear''
	After Free Software
	Stories of Connexion
	Modulations: From Free Software to Connexions
	Modulations: From Connexions to Creative Commons
	Participant Figuring Out

	9. Reuse, Modification, and the Nonexistence of Norms
	Whiteboards: What Was Publication?
	Publication in Connexions
	Agency and Structure in Connexions
	From Law and Technology to Norm
	On the Nonexistence of Norms in the Culture of No Culture
	Conclusion

	Conclusion
	The Cultural Consequences of Free Software

	Acknowledgement
	Acknowledgment

	Library of Congress
	Library of Congress Catalog

	Bibliography
	Book Index
	Index

